• Title/Summary/Keyword: High-Frequency Induction Heating

Search Result 244, Processing Time 0.039 seconds

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

A Study on the Maximum Energy Transfer of a Small Industrial Induction Heater (소형산업용 인덕션 히터의 최대에너지 전달에 관한 연구)

  • Lee, Jeong-Bin;Kim, Tae-Myoung;Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.534-539
    • /
    • 2021
  • Induction heating method that allows the maximum heating power to be delivered by varying switching frequency in the inductance change of the work coil of induction heater was proposed in this paper. Depending on the type of work piece in the work coil and proximity to the work coil, the resonance frequency of the resonant circuit will be changed. It may be difficult to deliver the maximum power due to the damage of the induced heater element or switching loss depending on the resonance frequency and switching frequency operating relationship. The switching frequency was variable to maintain the maximum power transmission by sensing the heating power due to the change of the resonance frequency. Through the result of the proposed method that can be controlled within the required output change range according to the change of the switching frequency corresponding to the change of the resonance frequency, the induction heater having a variable switching frequency characteristic that can transmit almost constant output power (within 0.43 dB) power efficiency was achieved.

A Study on the Characteristics for High Frequency Induction Heating of Ti Alloy Groove Wire (안경테용 Ti 합금 홈선의 고주파유도가열처리에 따른 특성 변화에 관한 연구)

  • Park, Jeong-Sik;Jang, Woo-Yeong;Lee, Jeong-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.3
    • /
    • pp.55-58
    • /
    • 2007
  • Titanum and its alloys have been used as the important materials of eyewear frame due to its light weight, mechanical strength and corrosion resistance. This study investigates hardness and microstructures of titanum alloy groove wires in according with heating time by high frequency induction heating. Because of increase of grain size by the growth of heating time, hardness of ${\beta}-Ti$ has reduced. Hardness of Ti-325 reduced until 2 sec and rapidly increased at 3 sec by high frequency induction heating. It is observed that hardness of Ti-325 reduces by the increase of the grain size until 2 sec and suddenly increased by the development of the detailed ${\alpha}+{\beta}$ lamella at 3 sec.

  • PDF

A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate (강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

A Study on the ZVS-SEPP Type High Frequency Resonant Inverter with induction Heating Jar(I) (IH-Jar용 ZVS-SEPP 고주파 공진 인버터에 관한 연구(I))

  • Kim, Jong-Hae;Kim, Dong-Hee;No, Chae-Gyan;Bae, Young-Ho;Baek, Seung-Myun;Moon, Chang-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.69-74
    • /
    • 1999
  • This paper presents about a example of circuit design and characteristics of proposed circuit in the case of adopted the high frequency resonant Inverter of SEPP type using ZVS(Zero-Voltage-Switching) to the Induction heating load. The soft switching technology known as ZVS is used to reduce turn on and off loss at switching. Also, this paper realizes quantitative circuit analysis which has change the equivalent of Induction heating load to the electric circuit. According to the calculated characteristics value, a method of the circuit designs and operation characteristics of the Inverter is proposed. In addition, this paper proves the propriety of theoretical analysis through the experiment. The proposed inverter shows it can be practically used as power source system for induction heating Jar etc.

  • PDF

Process Design of the Hot Pipe Bending Process Using High Frequency Induction Heating (고주파 유도가열을 이용한 열간 파이프 벤딩 공정 설계)

  • Ryu, Gyeong-Hui;Lee, Dong-Ju;Kim, Dong-Jin;Kim, Byeong-Min;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.110-121
    • /
    • 2001
  • During hot pipe bending using induction heating, the wall of bending outside is thinned by tensile stress. In design requirement, the reduction of wall thickness is not allowed to exceed 12.5%. So in this study, two methods of bending, one is loading of reverse moment and the other is loading of temperature gradient, have been investigated to design pipe bending process that satisfy design requirements. For this purpose, finite element analysis with a bending radius 2Do(outer diameter of pipe) has been performed to calculate proper reverse moment and temperature gradient to be applied. Induction heating process has been analyzed to estimate influence of heating process parameters on heating characteristic by finite difference method. Then pipe bending experiments have been performed for verification of finite element and finite difference analysis results. Experimental results are in good agreement with the results of simulations.

  • PDF

Local Heating of an Injection Mold using Selective Induction Heating (선택적 유도가열을 사용한 사출금형의 국부가열기술)

  • Do, Bum-Suk;Park, Jung-Min;Eom, Hye-Ju;Park, Keun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1119-1123
    • /
    • 2008
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a noncontact procedure. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has difficulty in efficient mold temperature control due to the restriction of an induction coil design suitable for the given mold shape. The present study proposed a localized mold heating method by means of selective use of mold material. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The feasibility of the proposed heating method is investigated through an experimental measurement in terms of the heating efficiency on the localized mold surface.

  • PDF

A Study on the Deformation of Cable Pipes via Induction Bending (고주파 벤딩을 통한 케이블 파이프의 변형에 관한 연구)

  • Joo, Yi-Hwan;Qin, Zhen;Moon, Seongmin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.79-84
    • /
    • 2020
  • Induction bending via high-frequency heating is widely used for manufacturing pipe and section steel bends. It allows productivity improvement, unit cost reduction, delivery time compliance, and good mechanical properties. The recent increase in high-end vessels and offshore plants has raised the demand for high-frequency bending, which should improve the product quality and reduce the costs by simplifying the fabrication process; therefore, the characteristics and performance of this technique must be studied and proper design technology is required. During hot pipe bending via induction heating, the outward wall thickness of the pipe is thinned due to tensile stress and this thickness reduction cannot exceed 12.5%. This study focused on pipe bends with a bending curvature of 5D and their optimization design; in particular, the conditions that can both improve the productivity of the high-frequency bending process and keep the maximum thickness reduction below 12.5% were determined.

Improved Modification of the Closed-Loop-Controlled AC-AC Resonant Converter for Induction Heating

  • Dhandapani, Kirubakaran;Sathi, Rama Reddy
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.298-303
    • /
    • 2009
  • A single-switch parallel resonant converter for induction heating is implemented. The circuit consists of an input LC-filter, a bridge rectifier, and a controlled power switch. The switch operates in soft commutation mode and serves as a high frequency generator. The output power is controlled via the switching frequency. A steady state analysis of the converter operation is presented. A closed-loop circuit model is also presented, and the experimental results are compared with the simulation results.

  • PDF