• Title/Summary/Keyword: High-Efficiency Motors

Search Result 274, Processing Time 0.038 seconds

Improvement of the Thermal Behavior of Linear Motors through Insulation Layer (단열재에 의한 리니어모터의 열특성의 향상)

  • Eun, L.D.;Lee, C.M.;Chung, W.J.;Choi, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.785-790
    • /
    • 2001
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.

  • PDF

State of the Art on Permanent Magnet Brushless DC Motor Drives

  • Singh, Bhim;Singh, Sanjeev
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • Permanent magnet brushless DC (PMBLDC) motors are the latest choice of researchers due to their high efficiency, silent operation, compact size, high reliability and low maintenance requirements. These motors are preferred for numerous applications; however, most of them require sensorless control of these motors. The operation of PMBLDC motors requires rotor-position sensing for controlling the winding currents. The sensorless control would need estimation of rotor position from the voltage and current signals, which are easily sensed. This paper presents state of the art PMBLDC motor drives with an emphasis on sensorless control of these motors.

Analysis of Microstructures and Defects of the Thixoformed Cu rotor for High Efficiency Electrical Motors (반응고 성형법에 의해 제조된 고효율 전동기용 Cu-Rotor의 미세조직 및 결함 분석)

  • 강병무;서동우;손근용;이상용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.55-59
    • /
    • 2003
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve efficiency of induction motors, however, it is desirable that pure aluminum is replaced by high electrical conductivity copper alloy. For this purpose, a rotor is thixoformed with Cu-Ca alloy. Thermomechanical processing(TMP) is carried out to modify the semi-solid microstructure of the alloy and final microstructures and filling defects of thixoformed Cu- rotors are investigated. The characteristics of thixoformed Cu-rotor such as motor efficiency and torque are compared with those of Al rotor.

  • PDF

Modeling and Characteristics of Switched Reluctance Motor (SRM) through Machine Language (기계언어를 통한 Switched Reluctance Motor(SRM)의 Modeling과 특성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • Permanent magnet synchronous motors can secure high power density and efficiency, but have problems in that the materials required for manufacturing are expensive and design is somewhat more difficult than induction motors. Therefore, it is necessary to develop an optimal motor that considers both efficiency and maintenance convenience and related control research. In addition, driving by a practical motor leads to a request to increase the highest efficiency in a narrow rated range, an increase in average efficiency in the entire electric driving range, and an increase in average output. Due to this movement, a reluctance motor that does not require a permanent magnet is being considered as an alternative. In this paper, in line with the issues of the times that require the development of future technology that can replace rare earth permanent magnet motors and the technological preemption of rare earth reduction motors and rare earth motors, switched reluctance motors without permanent magnet For motor, SRM), modeling through machine language (C language) and the characteristics of SRM accordingly are to be studied.

Electrical steel and traction motor performance analysis for HEV/EV (HEV/EV 전기강판 및 구동모터 특성해석)

  • Kim, Ji-Yun;Kim, Gyo-Sung;Kim, Jae-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.812-813
    • /
    • 2011
  • This paper presents the characteristic of newly developed electrical steel and motor performance analysis for HEV/EV. This material is developed and optimized for high frequency operation to reduce the core losses in traction motors to increase fuel efficiency. Four types of electrical steel are introduced, which are optimized for high flux density (PNHF), high frequency low core loss (PNF), high punchability (PNS) and high strength (PNT) to meet different specifications from different types of traction motors. To identify the motor performance with this material, finite element analysis was used to calculate core loss as well as Ld and Lq for efficiency map. Also structure analysis was performed to calculate stress on bridge rotor.

  • PDF

A Study on the International Standard and Regulation for Electric Motor and Drives (전동기와 드라이브의 국제 규격 및 규제에 관한 현황 연구)

  • Woo, Kyung-Il;Park, Han-Seok;Kim, Dea-Kyong;Choi, Han-Seok;Jun, Hee-Deuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.437-443
    • /
    • 2014
  • Electric motors and drives consume the largest amount of electricity more than 40% of global electricity consumption. In addition, motors, drives and its components are included in the global high-trade products and the main driving source for industrial equipment and house appliances. Thus, International standards and regulations for their safety and efficiency are internationally being discussed and created for the protection of its citizens and energy saving. So, understanding the international standards and the regulation of each country is essential to enhance overseas market and to develop product. In this paper, on the basis of this background, status and trends of international standards and regulations are introduced for safety and efficiency of motors and the drives. Safety and efficiency of the IEC (International Electrotechical Commission) standards are introduced in the emphasis. Also, regulations are studied about the differences and trends in each county.

Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability (연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발)

  • AHN, DEUKKUEN;LEE, HYUNJAE;SHIM, HYOSUB;KIM, DAEJONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.

Improvement of the Thermal Characteristics of Synchronous Linear Motors through Structure Change (Synchronous Linear Motor의 구조변경에 의한 열특성에 개선)

  • 은인웅;이춘만;정원지;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.367-370
    • /
    • 1997
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, the thermal behavior of a synchronous linear motor with high velocity and force is analyzed. To improve the thermal characteristics of the linear motor, structure of linear motor and cooler is changed. Some effects of an integrated cooler, an U-cooler and a thermal symmetrical cooler are presented.

  • PDF

Improvement of the Thermal Characteristics of Synchronous Linear Motors Through Insulation (단열에 의한 동기식 리니어모터의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force measured and analyzed. To improve the thermal characteristics of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.

A Study on the Design of High Efficiency Induction Motor by Grain-oriented Magnetic Cores (방향성 자기재료에 의한 유도전동기의 효율향상설계에 관한 연구)

  • 황영문;이인칠;안진우;박한웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 1989
  • A split-phase induction motor with asymmetrical magnetizing reactance axes develops starting torque and its efficiency can be high under certain conditions. In this paper, one method of producing the asymmetry of magnetizing reactance axes is described. The grain-oriented silicon steel core is used to produce the asymmetric axes instead of non-oriented silicon steel core which is used in general motors. The optimum design method for the motor is suggested and analyzed. To verify this suggestion, the permanent capacitor run type induction motors are designed to be driven at balanced condition by its asymmetrical effect, and then the oscillating torque due to the asymmetry of motor structures are analyzed. Tests of the sample motor have shown good performance comparable to ordinary types. This motor structure can be used where high effciency and reliability are required, and also the amount of core materials can be reduced due to its high permeability.

  • PDF