• Title/Summary/Keyword: High-Dielectric

Search Result 2,207, Processing Time 0.033 seconds

A Study on the Dielectric Characteristics of GFRP in LN2 under Lightning Impulse Voltage According to Pressure (액체질소 내에서 뇌 임펄스전압에 대한 압력별 GFRP의 절연파괴 특성 분석)

  • Hong, Jong-Gi;Heo, Jeong-Il;Nam, Seok-Ho;Kang, Hyoung-Kul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1471-1476
    • /
    • 2012
  • A study on the dielectric characteristics of the Glass Fiber Reinforced Plastic (GFRP) is important for designing a reliable high voltage superconducting machines such as transmission superconducting fault current limiters, superconducting cables, and superconducting transformers. In this paper, dielectric experiments of the GFRP under lightning impulse voltage are conducted in liquid nitrogen($LN_2$) according to various experimental conditions such as the thicknesses of the GFRP, the diameters of electrode systems and the pressures. The dielectric characteristics of the GFRP are analyzed by using a Finite Elements Method(FEM) according to various field utilization factors. It has been reported that the electrical insulation design of the GFRP would be conducted by considering the mean electric field intensity($E_{mean}$) distributed inside the GFRP. In this study, it is found that the dielectric performance of the GFRP could be explained by not only $E_{mean}$ but also the maximum electric field intensity ($E_{max}$). Finally, the empirical formulae of the GFRP to estimate an electrical breakdown voltage at sparkover under the lightning impulse condition are deduced. It is expected that the presented experimental results in this paper are helpful to design electrically reliable high voltage superconducting machines using the GFRP as an insulation material.

Microwave Dielectric Properties of $ZnWO_4$ Ceramics ($ZnWO_4$ 세라믹의 마이크로파 유전특성)

  • Yoon, Sang-Ok;Yun, Jong-Hun;Kim, Dae-Min;Hong, Sang-Heung;Kang, Ki-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.642-645
    • /
    • 2002
  • Microwave dielectric properties of $ZnWO_4$ ceramic were investigated with calcination and sintering temperatures. The dielectric properties required for such application are high dielectric constant$(\varepsilon_r)$, high $Q{\times}f_o$ value and low temperature coefficient of resonant frequency$(\tau_f)$. These requirement correspond to necessities for size reduction, excellent frequency selectivity, good temperature stability of devices. $ZnWO_4$ ceramics could be sintered at low $1075^{\circ}C$, which was comparatively low temperature for microwave dielectrics. As a result, $ZnWO_4$ showed the dielectric constant of 13, quality factor($Q{\times}f_o$ value) of 22000 and 'temperature coefficient of resonant frequency$(\tau_f)$ of $-65{\pm}5ppm/^{\circ}C$.

  • PDF

Study on Dielectric Dispersion of Epoxy/SiO2 Nanocomposites using High Voltage Generator (중전기기용 Epoxy/SiO2 나노복합재료의 유전분산 연구)

  • Ahn, Joon-Ho;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.348-351
    • /
    • 2007
  • Recently, Nanotechnology becomes a major issue in most part of industries. Nanotechnology is expected to develop various application products due to nano material mired composites is improved physical and electrical properties compared to conventional composites materials. Dielectric and insulation materials need to develop and improve like other field about nanotechnology. In this paper, we reported dielectric dispersion by size(no filler, $1.2{\mu}m$, 500 nm, 10 nm), frequencies(60, 120, 1 kHz), and temperatures($30{\sim}170^{\circ}C$). Dielectric constant of composites materials with filler shows higher than composites materials without filler and increased depending on rising temperatures in low frequency region. It was the effect that nano-filler and impurities in composites contributed to electrical conductivity. And dielectric properties depending on temperatures shows to change in low frequency region dramatically We analyzed interfacial polarization in low frequency region($10^{-2}$ Hz) and oriented polarization in high frequency region($10^{-5{\sim}6}$ Hz) on composites materials.

Recent Progress in Dielectric Materials for MLCC Application (MLCC용 유전체 소재의 연구개발 동향)

  • Seo, Intae;Kang, Hyung-Won;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • With the recent increase in demand for electronic devices, multi-layer ceramic capacitors (MLCCs) have become the most important core component. In particular, the next-generation MLCC with extremely high reliability is required for the 4th industrial revolution and electric vehicle applications. Therefore, it is necessary to develop dielectric ceramic materials with high dielectric properties and reliability. During the decades, electrical properties of BaTiO3 based dielectric ceramics, which have been widely used in MLCC industrial field, have been improved by microstructure and defect chemistry control. However, electrical properties of BaTiO3 have reached their limits, and new types of dielectric materials have been widely studied. Based on these backgrounds, this report presents the recent development trends of BaTiO3-based dielectric materials for the next-generation MLCCs, and suggests promising candidates to replace BaTiO3 ceramics.

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • Lee, Kyoung-Ho;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • 이경호;김용철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

High Frequency Dielectric Properties of $CaF_2$ filled Glass-Composites ($CaF_2$가 Filler로 첨가된 유리복합체의 고주파 유전특성)

  • Kim, Sun-Young;Lee, Kyoung-Ho;Kim, Sung-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.277-281
    • /
    • 2003
  • Effects of $CaF_2$ addition as a filler on the high frequency dielectric properties and sintering of CaO-$Al_2O_3-SiO_2-B_2O_3$(CASB) and ZnO-MgO-$B_2O_3-SiO_2$(ZMBS) glass composites were investigated. The optimal glass composition in the CASB system was 33.0CaO-$17.0Al_2O_3-35.0SiO_2-15.0B_O_3$(in wt%). The corresponding dielectric properties were k=8.1 and $Q{\times}fo$=1,200GHz. The sintering temperature was $800{\mu}m$. In case of 2MBS system, 25.0ZnO-25.0MgO-20.0$B_2O_3-30.0SiO_2$(in wt%) glass showed k=6.8 and $Q{\times}fo$=5,200GHz when it was sintered at $750^{\circ}C$. The maximum amount of $CaF_2$ in the CASB and 2MBS glass system without any detrimental effect on the sintering was 25.0 v/o and 15.0 v/o, respectively. The addition of $CaF_2$ in the glass systems improved the high frequency dielectric properties. In case of CASB+$CaF_2$ composite, k was 7.1 and $Q{\times}fo$ was 2,300GHz. And in case of 2MBS+$CaF_2$ composite, k was 5.9 and $Q{\times}fo$ was 8,100GHz. $CaF_2$ addition also reduced sintering temperature. Effects of $CaF_2$ on the dielectric and sintering properties was analyzed in terms of viscosity and crystallization behavior changes due to the interaction between $CaF_2$ and the glass systems.

  • PDF

탄소나노튜브와 ZnS:Cu,Cl 형광체 무기 EL

  • Kim, Jin-Yeong;Jeong, Dong-Geun;Yu, Se-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.68-68
    • /
    • 2010
  • Electroluminescence (EL) characteristics of green-emission ZnS:Cu,Cl-based ac-type inorganic powder electroluminescent structures were examined by inserting carbon nanotubes (CNTs) into or next to the dielectric layer. For the top-emission type EL structure, where the luminescent light was emitted from the top of the structure, was fabricated by assembling in order, a top electrode, an emitting layer, a dielectric layer, and a bottom electrode from the top. $BaTiO_3$ powder mixed with CNTs was used as a dielectric layer or CNTs were deposited between the bottom electrode and $BaTiO_3$ dielectric layer in order to improve the role of the dielectric layer in the structure. Luminance of an EL structure with CNTs inclusion was greatly enhanced possibly due to the high dielectric constant in the dielectric layer of $BaTiO_3$/CNTs, which is one of hot research topics utilizing nano-objects for intensifying dielectric constant and reducing dielectric loss at the same time. A variation on the CNTs themselves and their inclusion methods in the dielectric layer has been exhorted, and the underlying mechanism for the role of CNTs in the EL structure will be explained in the poster. In order to extend the flexibility of EL devices, EL devices were fabricated on the paper substrate and their performance was compared other EL devices on the plastic-based substrate.

  • PDF

Electric Field Calculation of Composite Media Dielectric with Different Resistivity by Using Surface Charge Method (저항을 특성이 크게 상이한 다매질 유전체 내부의 전계 계산을 위한 표면 전하법 기법)

  • Min, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.391-393
    • /
    • 1997
  • Two kinds of the calculation technique are Investigated with 3D triangular SCM for the arrangement of the dielectric sphere with different resistivity under a uniform electric field. The calculation error of Method I is small outside the sphere, but considerably high Inside. On the other hand, the accuracy is much Improved even Inside the solid dielectric by Method II, which uses double layers of triangular charges on the dielectric boundary.

  • PDF

Experimental Study on the WEDG Characteristics of WC-Co -Relationship between Surface Integrity and Dielectric Conditions- (WEDG법에 의한 WC-Co의 가공특성의 실험적 연구 -가공액환경에 따른 표면특성-)

  • 정태현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.246-251
    • /
    • 2000
  • In this paper, Wire electric discharge grinding(WEDG) method for manufacturing the micro shaft was introduced and the machining characteristics was investigated. from the experimental results, it was concluded that high surface integrity could be obtained by use of dielectric fluid spraying method and small capacitive condenser.

  • PDF