• Title/Summary/Keyword: High-Bridge IGBT

Search Result 59, Processing Time 0.023 seconds

High-current Full-Bridge Zero-Voltage-Switched DC-DC Converter (대전류형 FB ZVS DC-DC 컨버터에 관한 연구)

  • Lee, Byung-Ha;Jin, Jung-Hwan;Kim, In-Soo;Sung, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.365-367
    • /
    • 1995
  • This paper is concerned on developing low-voltage high-current DC-DC converter using FB-ZVS PWM Converter. The converter output is 28V, 100A and regulated by phase-shift control method. IGBT is used by the main switching device and high frequency transformer is made for operating at 30kHz switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF

Suppression of high frequency leakage current in PWM Inverter-Fed Induction Motor Drives using Active Common Mode Voltage Damper (능동형 커먼 모드 전압 감쇄기를 통한 유도 전동기의 고주파 누설전류 억제)

  • 홍순일
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.186-190
    • /
    • 2000
  • This paper propose a "Active common-mode voltage damper circuit" that capable of a suppression of a common-mode voltage produced in the PWM VSI. The four level half-bridge PWM inverter circuit and common-mode transformer are incorporated into the "Active common-mode voltage damper" the design method of which is presented Effect of "Active common-mode voltage damper" in this paper verifies a propriety and effectiveness in 2.2[kW] induction motor drive using IGBT inverter. Experimental results show that "common-mode voltage damper" makes contributions to reducing a high frequency leakage current and common-mode voltage.leakage current and common-mode voltage.

  • PDF

Development of 3,300V 1MVA Multilevel Inverter using Series H-Bridge Cell (3,300V 1MVA H-브릿지 멀티레벨 인버터 개발)

  • 박영민;김연달;이현원;이세현;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.478-487
    • /
    • 2003
  • In this paper, a type and special feature of Multi-level inverter used in medium-voltage and high-capacity motor driver is introduced. Especially, a power quality and structural advantages of H-Bridge Multi-level inverter is described. It presented the specific structure of power circuit, design method, controller composition and PWM techniques of the cascaded H-Bridge Multi-level inverter which is developed. The feasibility of the developed product based on 3,300V lMVA 7-level H-bridge inverter was studied by experiments and we get conclusion that 1)generate of near-sinusoidal output voltage; 2)is low dv/dt at output voltage; 3)reduce the harmonic injection at input; Experiment demonstrate that it is very economical in productivity because of using the existing production technique and examination equipment, and has the reliability and a good maintenance due to the structure of Power Cell unit combination as well as low cost IGBT.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

A Hybrid Modular Multilevel Converter Topology with an Improved Nearest Level Modulation Method

  • Wang, Jun;Han, Xu;Ma, Hao;Bai, Zhihong
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.96-105
    • /
    • 2017
  • In this paper, a hybrid modular multilevel converter (MMC) topology with an improved nearest level modulation method is proposed for medium-voltage high-power applications. The arm of the proposed topology contains N series connected half-bridge submodules (HBSMs), one full-bridge submodule (FBSM) and an inductor. By exploiting the FBSM, half-level voltages are obtained in the arm voltages. Therefore, an output voltage with a 2N+1 level number can be generated. Moreover, the total level number of the inserted submodules (SMs) is a constant. Thus, there is no pulse voltage across the arm inductors, and the SM capacitor voltage is rated. With the proposed voltage balancing method, the capacitor voltage of the HBSM is twice the voltage of the FBSM, and each IGBT of the FBSM has a relatively low switching frequency and an equalized conduction loss. The capacitor voltage balancing methods of the two kinds of SMs are implemented independently. As a result, the switching frequency of the HBSM is not increased compared to the conventional MMC. In addition, according to a theoretical calculation of the total harmonic distortion of the electromotive force (EMF), the voltage quality with the presented method can be significantly enhanced when the SM number is relatively small. Simulation and experimental results obtained with a MMC-based inverter verify the validity of the developed method.

Development of Prepolarization Coil Current Driver in SQUID Sensor-based Ultra Low-field Magnetic Resonance Apparatuses (SQUID 센서 기반의 극저자장 자기공명 장치를 위한 사전자화코일 전류구동장치 개발)

  • Hwang, S.M.;Kim, K.;Kang, C.S.;Lee, S.J.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • SQUID sensor-based ultra low-field magnetic resonance apparatus with ${\mu}T$-level measurement field requires a strong prepolarization magnetic field ($B_p$) to magnetize its sample and obtain magnetic resonance signal with a high signal-to-noise ratio. This $B_p$ needs to be ramped down very quickly so that it does not interfere with signal acquisition which must take place before the sample magnetization relaxes off. A MOSFET switch-based $B_p$ coil driver has current ramp-down time ($t_{rd}$) that increases with $B_p$ current, which makes it unsuitable for driving high-field $B_p$ coil made of superconducting material. An energy cycling-type current driver has been developed for such a coil. This driver contains a storage capacitor inside a switch in IGBT-diode bridge configuration, which can manipulate how the capacitor is connected between the $B_p$ coil and its current source. The implemented circuit with 1.2 kV-tolerant devices was capable of driving 32 A current into a thick copper-wire solenoid $B_p$ coil with a 182 mm inner diameter, 0.23 H inductance, and 5.4 mT/A magnetic field-to-current ratio. The measured trd was 7.6 ms with a 160 ${\mu}F$ storage capacitor. trd was dependent only on the inductance of the coil and the capacitance of the driver capacitor. This driver is scalable to significantly higher current of superconducting $B_p$ coils without the $t_{rd}$ becoming unacceptably long with higher $B_p$ current.

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

Development of Converter for High Frequency Welding Machines using Active Snubber (액티브 스너버를 이용한 고주파 용접기 컨버터 개발)

  • Shin, Jun-Young;Lee, Jae-Min;Choi, Seung-Won;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.351-355
    • /
    • 2016
  • Welding machines are high-capacity systems used in a low-frequency range using IGBT. As their system is similar to a large transformer, most welding machines suffer a great loss because of hard switching and vast leakage inductance. A voltage-balancing circuit is designed to overcome these shortcomings. This circuit can reduce the transformer size by making it into a high frequency and reducing the input voltage by half and by adopting a serial structure that connects two full-bridges in a series to use a MOSFET with a good property at high frequency. In addition, a Schottky diode is used in the primary rectifier to overcome the low efficiency of most welding machines. To use the Schottky diode with a reliably relatively low withstanding voltage, an active snubber is adopted to effectively limit the ringing voltage of the diode cut-off voltage.

Implement of Serial-Parallel Resonant High-Frequence Induction Heating System by Improvement of Bridge Circuit (브리지회로의 개선에 의한 직병렬 공진 고주파 유도가열 시스템의 실현)

  • Ryu, Min-Seob;Hong, Soon-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.788-790
    • /
    • 1999
  • 고주파 열처리 유도로의 설계에서 품질의 향상을 위하여 인버터의 고주파 기술이 요구되고 있다. 본 연구에서는 고주파 유도가열 장치의 대용량, 고주파 화를 실현하기 위하여 회로 설계 기술과 제어방식을 제안하였다. 부하 공진 인버터는 H형 전-브리지로 구성하고 각 암 당 IGBT를 2병렬로 조합하여 구성하고 부하는 직병렬 공진회로로 구성한다. 스위칭 동작은 8개의 IGBT중 각 암 당 2개씩 순차제어하여 고속 대용량의 고주파 전력을 출력시킨다. 또한 스위칭은 스위치 턴온 오프시에 스위칭 손실을 줄이기 위해 ZVS기법을 도입한다. 제어는 고정주파수 PWM제어를 하여 전력변환 효율을 극대화한다.

  • PDF