• 제목/요약/키워드: High velocity oxygen fuel(HVOF)

검색결과 40건 처리시간 0.027초

WC-Co-Cr 용사코팅시 분말의 혼합이 코팅층의 기계적 특성에 미치는 영향 (Effects of Powder Mixing on the Mechanical Properties of Thermally Sprayed WC-Co-Cr Coating Layers)

  • 이창우;한준현;신명철;권숙인
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.290-296
    • /
    • 2009
  • We report on the effects of mixing of powders with various particle sizes on fracture toughness and wear resistance of thermally sprayed WC-10Co-4Cr coating layers fabricated by HVOF (high-velocity oxygen fuel) process. The size and the mixing ratio of powders were changed in order to get high fracture toughness and wear resistance. The mixing of small amount of coarse powders with fine powders resulted in the highest fracture toughness and wear resistance due to the lowest porosity in coating layers.

세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향 (Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating)

  • 이정일;어순철;이영근
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF

SPRAY DEPOSITION OF MECHANICALLY ALLOYED F/M ODS STEEL POWDER

  • SUK HOON KANG;CHANG-KYU RHEE;SANGHOON NOH;TAE KYU KIM
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.607-611
    • /
    • 2019
  • Thermal/cold spray deposition were used for additive manufacture of oxide dispersion strengthened (ODS) steel layers. Mechanically alloyed F/M ODS steel powders (Fe(bal.)-10Cr-1Mo-0.25Ti-0.35Y2O3 in wt.%) were sprayed by a high velocity oxygen fuel (HVOF) and cold spray methods. HVOF, as a thermal method, was used for manufacturing a 1 mm-thick ODS steel layer with a ~95% density. The source to objective distance (SOD) and feeding rate were controlled to achieve sound manufacturing. Y2Ti2O7 nano-particles were preserved in the HVOF sprayed layer; however, unexpected Cr2O3 phases were frequently observed at the boundary area of the powders. A cold spray was used for manufacturing the Cr2O3-free layer and showed great feasibility. The density and yield of the cold spray were roughly 80% and 45%, respectively. The softening of ODS powders before the cold spray was conducted using a tube furnace of up to 1200℃. Microstructural characteristics of the cold sprayed layer were investigated by electron back-scattered diffraction (EBSD), the uniformity of deformation amount inside powders was observed.

초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅 (HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle)

  • 김길수;백남기;윤재홍;조동율;윤석조;오상균;황순영;천희곤
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

Determination of Chromium Content in Carbon Steel Pipe of NPP using ICP-AES

  • Choi, Kwang-Soon;Lee, Chang-Heon;Han, Sun-Ho;Park, Yong-Joon;Song, Kyu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4270-4274
    • /
    • 2011
  • A method is proposed for determining chromium content in the carbon steel pipes of a nuclear power plant (NPP) to evaluate wall thinning caused by flow-accelerated corrosion (FAC). A flat file was used to obtain filings samples. To assess sampling quality, a disk form of SRM 1227 was ground with the flat file, and the amount of Cr in the filings was determined by ICP-AES. The content of chromium in the filings of SRM 1227 was estimated as six times higher than the certified value due to the contamination of chromium in the file. To eliminate chromium contamination from the file, it was coated with WC-12Co using high-velocity oxygen-fuel (HVOF) spraying systems. After obtaining filings samples using the coated file, Cr content in four types of disk-form SRMs was determined by ICP-AES. The recoveries of Cr in the disk-form SRMs were in the range of 95.4-102.6%, with relative standard deviations from 0.43 to 3.0%. The Cr contents in the filings collected from the used outlet headers of the nuclear power plants using the flat file coated were in the range of 0.11-0.19%.

MCrAlY 열차폐 코팅의 고온산화 (High temperature oxidation of MCrAlY thermal barrier coating)

  • 고재황;이동복
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.219-219
    • /
    • 2003
  • HVOF(High Velocity Oxygen Fuel)법을 사용한 MCrAlY(M=Ni, Co, Fe)계 열차폐 코팅(thermal barrier coating)은 열기관 내부의 극심한 환경 부하에 대해 구조물 표면에 열적, 화학적 장벽을 형성함으로써 구조물의 내구성을 향상시킨다 이와 동시에 열차폐 효과는 구조물의 온도상승 없이 내부 가동 온도를 높일 수 있게 함으로써 열효율을 상승시키고 연료 효율을 높여 가동비용 절감을 이룰 수 있는 동시에 고 연소를 통한 오염원의 배출을 감소시킬 수 있다. 본 연구에서는 $H_2O$$_2$=5:1 분위기 하에서 HVOF법을 사용하여 Hastelloy-X 기판위에 125$\mu\textrm{m}$의 두께로 다음 5종류의 (Ni, Co, Cr)계 MCrAlY 코팅을 용사시켰다. 준비된 (Ni, Co)-Cr-Al-(Y, Ta, Re), (Ni, Co)-Cr-Al-(Y, Re), (Ni, Co)-Cr-Al-(Y, Ta), (Ni, Co)-Cr-Al-Y, (Ni,Co)-Cr-Al-Ir 코팅시편에 대한 산화성질을 조사하기 위해 대기 중 1000, 1100, 120$0^{\circ}C$에서 50, 100, 150, 200시간 등온실험(Isothermal oxidation)을 실시하였고, XRD, SEM/EDS, EPMA를 이용하여 생성된 산화막과 코팅 시편의 조직 변화를 조사하였다. 산화온도와 산화시간이 증가할수록 산화막의 박리가 많이 발생하였으며, 분석 결과 미세하게 분포된 a-Al$_2$O$_3$ 입자, NiCr$_2$O$_4$스피넬 상, 미세한 Cr$_2$O$_3$가 관찰되었고, 코팅 조성 변화에 따라 형성되는 이들 산화물의 존재비가 달라졌으며, 산화온도가 높아질수록 산화속도가 가속화되었다.

  • PDF

고온 재료 테스트를 위한 고속 산소 연료 토치 흐름에서의 열유속 측정 (Heat Flux Measurements in High Velocity Oxygen-Fuel Torch Flow for Testing High Thermal Materials)

  • ;최성만;홍성민
    • 한국추진공학회지
    • /
    • 제25권2호
    • /
    • pp.34-41
    • /
    • 2021
  • 상업용 HVOF 토치 (원래 코팅 용도로 설계됨)가 재료 테스트를 위한 고온 유동원으로 수정되었다. 이 연구에서는 수냉식 상용 Gardon 게이지를 사용하여 노즐 출구에서 떨어진 네 위치에서 열유속을 측정하였다. 냉각수 온도 데이터는 동일한 위치에서 열량 측정 열유속 (calorimetric heat flux)을 계산하는 데 사용되었다. 두 방법의 열유속을 비교 한 결과 열량 측정 열유속이 Gardon 게이지 열유속보다 몇 배 더 높은 것으로 나타났다. 두 가지 방법 사이에 나타나는 불일치를 이해하기 위해 열량 측정방법에 대한 가설을 적용하였다. 이것은 가설에 대한 상당한 검증으로 간주될 수 있지만 적절한 수치모델을 사용하여 추가 개선이 필요하다.

터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅 (HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower)

  • 주윤곤;윤재홍;조동율;천희곤
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

스프레이 코팅 기술 (Spray Coating Technology)

  • 이창희
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

TBC/CoNiCrAlY 용사코팅의 열싸이클 특성 (Thermal cyclic characteristics of TBC/CoNiCrAlY thermal barrier coatings)

  • 김의현;유근봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.45-47
    • /
    • 2006
  • The rotating components in the hot sections of land-based gas turbine are exposed to severe environments during several tens thousand operation hours at above $1100^{\circ}C$ operation temperature. To protect such components from high temperature oxidation, an intermediate bond coat is applied, typical of a MCrAlY-type metal alloy. This study is concerned with the thermal cyclic behavior of thermal barrier coatings. The MCrAlY bond coatings are deposited by HVOF (High Velocity Oxygen Fuel) method on a nickel-based superalloy (GTD-111). Thermal cyclic tests at $1100^{\circ}C$ in ambient air for various periods of time were used to evaluate the thermal cyclic resistance of the TBC coating. The microstructure and morphology of as-sprayed and of thermal cycled coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

  • PDF