• Title/Summary/Keyword: High value-added compounds

Search Result 48, Processing Time 0.028 seconds

Composting of Small Scale Static Pile by addition of Microorganism (미생물 첨가에 의한 소규모 정체식 퇴비화)

  • Chang, Ki-Woon;Yu, Young-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.149-153
    • /
    • 2003
  • This study was conducted to survey the utilization possibility of composting system of small scale static pile with animal manure produced from cattle shed and the effect of addition of microorganism on the maturity of compost. Microorganisms added in composting substrate were bacteria+lactobacillus(BL)+photo.(BLP). The composting practiced was a windrow system without aeration equipment and turning was practiced periodically. The water content of substrate mixed with cow manure, rice husk, and sawdust was about 60%. The temperature during the composting process was increased at over $60^{\circ}C$ within 3 days after composting starting. Increase of temperature at the early stage of composting was fasten in BLP and BL than Control. Because the pH of the raw material was high, the changes of pH during composting was little and stabilized in weak alkaline condition. EC value was high for accumulation of manure and urine excreted continuously by animal and the changes of those during composting occurred in 5~10% increase. Reduction rates of C/N ratio were the largest as the 22.7% in BLP and 19.2and 17.5% in BL and Control respectively. In the evaluation of phytotoxicity, there was stabilized within the short time in BLP and not the difference between BL and Control. Treatment of animal manure produced from small scale cattle shed was possible by using the small scale static pile composting system with reasonable water content and turning and the addition of microorganism in composting substrate was effected on the temperature increase at the early stage of composting and reduction of plant toxicity compounds but little on the maturity of compost.

  • PDF

Microbial bioconversion of natural Philippine nut oils into a value-added hydroxy fatty acid, 7,10-dihydroxy-8(E)-octadecenoic acid (미생물 생변환을 통한 필리핀 너트유로부터 기능성 지방산 7,10-dihydroxy-8(E)-octadecenoic acid 생산)

  • Dasangrandhi, Chakradhar;Ellamar, Joel B.;Kim, Young Soon;Kim, In Hwan;Kim, Hak-Ryul
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Biocatalytic modification of natural resources can be used to generate novel compounds with specific properties, such as higher viscosity and reactivity. The production of hydroxy fatty acids (HFAs), originally found in low quantities in plants, is a good example of the biocatalytic modification of natural vegetable oils. HFAs show high potential for application in a wide range of industrial products, including resins, waxes, nylons, plastics, lubricants, cosmetics, and additives in coatings and paintings. In a recent study, Pseudomonas aeruginosa strain PR3 was used to produce 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid. This present study focused primarily on the utilization of three natural nut oils obtained from the Philippines -pili nut oil (PNO), palm oil (PO), and virgin coconut oil (VCO)- to produce DOD by P. aeruginosa strain PR3. Strain PR3 produced DOD from PNO and PO only, with PNO being the more efficient substrate. An optimization study to achieve the maximum DOD yield from PNO revealed the optimal incubation time and medium pH to be 48 h and 8.0, respectively. Among the carbon sources tested, fructose was the most efficiently used, with a maximum DOD production of 130 mg/50 mL culture. Urea was the optimal nitrogen source, with a maximum product yield of 165 mg/50 mL culture. The results from this study demonstrated that PNO could be used as an efficient substrate for DOD production by microbial bioconversion.

Nutritional compositions and antioxidative activities of two blueberry varieties cultivated in South Korea (국내산 두 품종 블루베리의 영양성분 및 항산화 활성 비교)

  • Song, Hyo-Nam;Park, Myoung-Su;Youn, Ho-Sik;Park, Sung-Jin;Hogstrand, Christer
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.790-798
    • /
    • 2014
  • The nutritional compositions and antioxidative activities of the Kimcheon lowbush and Pyungtaek highbush blueberries cultivated in South Korea were investigated. The approximate compositions, pH, and soluble-solid and mineral contents of P, Ca, Mg, Na, and Zn were determined. Both blueberry cultivars had mainly fructose and glucose as free sugars while disaccharides such as sucrose, maltose, and lactose were not detected in both. Oleic, linoleic, and linolenic fatty acids were the major fatty acids in both types of blueberries. The total of 16 free amino acids, including seven essential and nine non-essential amino acids, were higher in the Pyungtaek highbush blueberry. Among the amino acids, arginine was especially much higher in the Pyungtaek highbush blueberry. The anthocyanin, resveratrol, and polyphenol compounds, which are the important biologically active compounds in blueberries, were found. The anthocyanin contents of the Kimcheon lowbush and Pyungtaek highbush blueberries were 22.0 and 18.1 mg/100 g, respectively; the resveratrol contents by HPLC, 0.12 and 0.11 mg/100 g; and the total polyphenol contents, 141.3 and 138.4 mg/100 g. The electron-donating ability determined based on the DPPH radical scavenging activity was increased in a concentration-dependent manner, and it was higher than that of the Pyungtaek highbush blueberries, which implies that it is highly correlated with the higher amounts of total polyphenol, anthocyanin, and resveratrol in it. In conclusion, the two varieties of Korean blueberries can be suggested as potential sources of high-value-added functional foods.

Quality Characteristics of Soybean Anchovy Sauce Added with Medicinal Herbs (약용식물을 첨가한 어간장의 품질특성)

  • Kim, Young-Sook;Yeum, Dong-Min;Roh, Sung-Bae;Kim, Young-Hee;Chung, Sun-Kyung
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.367-376
    • /
    • 2008
  • This study was conducted to investigate 1he quality characteristics of 1he soybean anchovy sauces added with medicinal herbs, Saururu chinensis Baill. and Houttuynia cordata Thunb. and fermented for 4 months. The total nitrogen content of 1he soybean anchovy sauce increased with the fermentation time showing the highest values in the sauce with Houttuynia cordata Thunb.. The contents of total sugar and reduced sugar were high in the order of the sauces with Houttuynia cordata Thunb.(sauce T), with Saururu chinensis Baill.(sauce B), and control. The content of salt decreased much more in the sauces with medicinal herbs. After 4 months of fermentation, pH was lowered from 5.86 to 5.27 in control, to 5.38 and 5.54 in sauce B and sauce T, respectively. Generally the total aerobic bacterial count increased until 3 months of fermentation and then decreased, and the addition of medicinal hems reduced the count especially showing apparent reduction in the sauce T. During the fermentation, total protease activity generally increased with the highest value in the sauce T. In the changes of nucleotides and their related compounds, the contents of AMP, ADP, and ATP were increased and hypoxanthine decreased during the fermentation, and IMP produced after 3 months. The soybean anchovy sauce B had 1he highest IMP and the lowest hypoxanthine after 4 months. The content of total amino acids increased showing 177.1 mg% and 134.7 mg% in the sauce B and sauce T respectively compared with 171.2 mg% of control. The contents of glutamic acid and aspartic acid were 29.2 mg% in sauce B and 34.3 mg% in sauce T, which were higher compared with 25.9 mg% of control. The fermented soybean anchovy sauce had 1he functionality of ACE inhibition with 70.5% (control), 72.5% (sauce B) and 81.6% (sauce T). In the results of sensory evaluation, the sance T scored the highest and the sauce B was preferred to control.

Preparation of Functional Healthy Drinks by Ethanol Extracts from Defatted Safflower Seed Cake (탈지 홍화씨박 에탄올추출물 함유 기능성 건강음료의 제조)

  • 김준한;김종국;강우원;김귀영;최명숙;문광덕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1039-1045
    • /
    • 2003
  • Functional healthy drinks were processed with freeze dried powders of ethanol extract from of defatted safflower (Carthamus tinctorious L.) seed cake and some useful components of the drinks were investigated. Yield of freeze dried powder was the highest as 8.42% when it extracted with 60% ethanol (60% EFDP). Each drink contained 0.02% of freeze dried powder and ranged 10.6∼13.8% of soluble solid, 2.90∼3.68 of pH, 0.10∼0.83% of titratable acidity. ‘L’ value of drink-I (DSD-I) was the highest as 94.82$\pm$2.45, ‘b’ and ‘a’ value of drink-V (DSD-V) was highest as 27.15-2.65 and 28.67$\pm$2.69, respectively. Major free sugars of drink were 6015.3∼7918.2 mg% of glucose and 1511.4∼2091.0 mg% of sucrose. The content of citric acid was the highest as 179.2∼981.3 mg%. The content of total phenol in 60% EFDP was 99.17 mg% and that of drink-II(DSD-II) and DSD-V was 307.84 mg% and 224.06 mg%, respectively. Total flavonoid was contained as 50.29 mg% in 80% ethanol extract (80% EFDP) and 125.20 mg% in DSD-V. N-[2-(5-hydroxy-1H-indol-3-yl) ethyl] ferulamide (serotonin-I) was determined as high as 18.81 ppm in 80% EFDP and ranged 2.42∼2.89 ppm in drinks. N-[2-(5-hydroxy-lH-indol-3yl)ethyl]-p-coumaramide (serotonin-II) was determined as 30.17 ppm in 80% EFDP and ranged 3.79∼4.59 ppm in drinks. Acacetin, flavonoid compound were 9.83 ppm in amyloglucosidase hydrosis + 60% ethanol extract (A + 60% EFDP) and ranged 0.98∼1.26 ppm in drinks. Electron donating ability (EDA, %) was measured and compared with 100 ppm BHA as chemical antioxidant. EDA was 93.97$\pm$2.21% in A+60% EFDP, 94.79$\pm$2.26% in DSD-I, 94.69$\pm$1.37% in DSD-II, and 93.83$\pm$1.49% in BHA. DSD-II added with hot water extract solution from Korean ginseng and safflower yellow pigment recorded the highest sensory score.

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis (Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성)

  • Nam, Gyeong-Hwa;Jang, Myoung-Uoon;Kim, Min-Jeong;Lee, Jung-Min;Lee, Min-Jae;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.

Increased Anti-oxidative Activity and Whitening Effects of a Saposhnikovia Extract Following Bioconversion Fermentation using Lactobacillus plantarum BHN-LAB 33 (Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1208-1217
    • /
    • 2019
  • Saposhnikovia has been used as a traditional medicinal herb in Asia because of the reported anti-inflammatory, anti-allergic rhinitis, pro-whitening, anti-atopy, anti-allergy, and anti-dermatopathy effects of the phytochemical compounds it contains. In this study, we investigated the antioxidant effects of a Saposhnikovia extract after fermentation by Lactobacillus plantarum BHN-LAB 33. Saposhnikovia powder was inoculated with L. plantarum BHN-LAB 33 and fermented at $37^{\circ}C$ for 72 hr. After fermentation, the total polyphenol content of the Saposhnikovia extract increased by about 14%, and the total flavonoid content increased by about 9%. The superoxide dismutase-like activities, DPPH radical scavenging, ABTS radical scavenging, reducing power activity, and tyrosinase inhibition activity also increased after fermentation by approximately 70%, 80%, 45%, 39%, and 44%, respectively. The results confirmed that fermentation of a Saposhnikovia extract by L. plantarum BHN-LAB 33 is an effective way to increase the antioxidant effects of the extract. The bioconversion process investigated in this study may have the potential to produce phytochemical-enriched natural antioxidant agents with high added value from Saposhnikovia matrices. These results can also be applied to the development of improved foods and cosmetic materials.