• 제목/요약/키워드: High vacuum seasoning

검색결과 5건 처리시간 0.02초

Performance Improvement of All Solution Processable Organic Thin Film Transistors by Newly Approached High Vacuum Seasoning

  • Kim, Dong-Woo;Kim, Hyoung-Jin;Lee, Young-Uk;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2012
  • Organic thin film transistors (OTFTs) backplane constitute the active elements in new generations of plastic electronic devices for flexible display. The overall OTFTs performance is largely depended on the properties and quality of each layers of device material. In solution based process of organic semiconductors (OSCs), the interface state is most impediments to preferable performance. Generally, a threshold voltage (Vth) shift is usually exhibited when organic gate insulators (OGIs) are exposed in an ambient air condition. This phenomenon was caused by the absorbed polar components (i.e. oxygen and moisture) on the interface between OGIs and Soluble OSCs during the jetting process. For eliminating the polar component at the interface of OGI, the role of high vacuum seasoning on an OGI for all solution processable OTFTs were studied. Poly 4-vinly phenols (PVPs) were the material chosen as the organic gate dielectric, with a weakness in ambient air. The high vacuum seasoning of PVP's surface showed improved performance from non-seasoning TFT; a $V_{th}$, a ${\mu}_{fe}$ and a interface charge trap density from -8V, $0.018cm^2V^{-1}s^{-1}$, $1.12{\times}10^{-12}(cm^2eV)^{-1}$ to -4.02 V, $0.021cm^2V^{-1}s^{-1}$, $6.62{\times}10^{-11}(cm^2eV)^{-1}$. These results of OTFT device show that polar components were well eliminated by the high vacuum seasoning processes.

  • PDF

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • 윤수복;김두현;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

양념으로 사전 숙성하여 진공포장한 사슴고기의 냉장저장 중 품질 변화 (Changes of in Vacuum Packed Pre-aged Venison with Seasoning during Chilled Storage)

  • 김일석;진상근;하경희;박석태;곽경락;박정권;강양수;정구용
    • 한국축산식품학회지
    • /
    • 제25권4호
    • /
    • pp.442-448
    • /
    • 2005
  • 사슴 뒷다리 부위를 채취하여 일정한 크기로 자른 후 동일한 비율의 소스(T1 고추장 소스, T2 간장 소스)에 혼합하고 이를 플라스틱 박스에 넣어 $0\pm1^{\circ}C$에서 10일간 사전 숙성 처리한 후 진공 포장하여 $0\pm1^{\circ}C$에서 28까지 저장하면서 품질 특성을 조사하였다. pH는 두 처리구 모두 저장기간이 길어짐에 따라 유의적으로 감소하였다(p<0.05). T1의 염도는 저장 전 기간 동안 유의적인 차이가 없었고(p>0.05), T2는 저장 28일에는 $1.33\%$로 유의적으로 높았다(p<0.05). 당도는 T1이 T2보다 저장 전 기간 동안 유의적으로 높았다(p<0.05). 저장 기간이 길어짐에 따라 T1에서 $L^*$값과 $b^*$값은 증가하는 반면 T2는 감소하였다. $b^*$값과 전단가$(g/cm^2)$는 저장 기간이 경과함에 따라 모두 증가하였다. 관능검사 결과, 저장 28일 차까지 전체적인 기호도는 $6.75(T1)\~7.00(T2)$ 수준으로 비교적 높은 점수를 얻었다. 본 연구에서 양념으로 사전 숙성 처리하여 진공포장한 양념 사슴육은 새로운 메뉴로서의 가치가 있을 것으로 여겨진다.

키조개(Atrina pectinata) 패주를 이용한 조미 중간수분제품의 제조 및 품질특성 (Development and Quality Characteristics of Seasoned Dried Pen Shell Atrina pectinata Adductor)

  • 황영숙;황석민;오광수
    • 한국수산과학회지
    • /
    • 제51권6호
    • /
    • pp.632-639
    • /
    • 2018
  • To develop the high-value added seafood products from a regional speciality seafood, the seasoned dried pen shell Atrina pectinata adductor (SDPA) and seasoned smoke-dried pen shell adductor (SSPA) samples were prepared, and their optimal processing conditions, quality metrics, and shelf-life characteristics were examined. SDPA and SSPA samples were produced by thawing of frozen pen shell adductor, and cutting it into 6-7 mm slices, hot-air drying ($60^{\circ}C$, 20 min) or smoking ($110^{\circ}C$, 20 min), seasoning ($4^{\circ}C$, 12 h) with seasoning powder (60% sorbitol, 15% sucrose, 16% salt and 9.0% monosodium glutamate), hot-air drying ($60^{\circ}C$, 3 h), torching, vacuum-packaging in a laminated plastic film bag, heat treating with hot-water ($85^{\circ}C$, 15 min), and cooling. The moisture content of SDPA and SSPA samples was 44.5 and 43.0%, respectively, and the water activity was 0.845 and 0.842. The total amino acids in SDPA and SSPA samples were 20,986.8 and 21,312.4 mg/100 g, respectively, and the major amino acids in both products were aspartic acid, serine, glutamic acid, proline, glycine, alanine, valine, leucine, phenylalanine, lysine and arginine. The primary minerals were Na, S, K and P. Incubating tests indicated that the quality of SDPA and SSPA samples was maintained for 30 days of storage.

가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性) (On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea)

  • 조남석;조재명;안원영
    • Journal of the Korean Wood Science and Technology
    • /
    • 제2권3호
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF