• 제목/요약/키워드: High torque

검색결과 1,679건 처리시간 0.033초

NREL 5MW 풍력터빈의 제어시스템 설계 (Control System Design of NREL 5MW Wind Turbine)

  • 남윤수;임창희
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

약계자영역을 포함한 BLDC 전동기의 새로운 토크 리플 최소화 방법 (Torque Ripple Minimization of BLDC Motor Including Flux-Weakening Region)

  • 원태현;박한웅;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.445-454
    • /
    • 2002
  • Torque ripple control of brushless DC motors has been the persisting issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. In this paper, a novel approach to achieve the ripple-free torque control with maximum efficiency based on the d-q reference frame is presented and analyzed. The proposed approach can provide the optimized phase current waveforms over wide speed range incorporating cogging torque compensation without an access to the neutral point of the motor windings. Moreover, the undesirable errors caused by the assumptions such as 3 phase balance or symmetry of the phase back EMF between electrical cycles, which are related with the manufacturing imperfections, can be also eliminated. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. A hysteresis current control system is employed to produce high-frequency electromagnetic torque ripples for compensation. The validity and applicability of the proposed control scheme to real situations are verified through the simulations and experimental results.

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

반응표면법을 이용한 6/4극 구조를 갖는 스위치드 릴럭턴스 모터의 토크 리플 저감을 위한 형상 최적설계 (Shape Optimization of a Switched Reluctance Motor Having 6/4 Pole Structure for the Reduction of Torque Ripple Using Response Surface Methodology)

  • 최용권;윤희성;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.608-616
    • /
    • 2006
  • Recently, a switched reluctance motor is widely used in various industries because it has many advantages such as a simple structure, robustness, less maintenance, high torque/weight ratio, and easy speed control over other types of motors. However, a switched reluctance motor inherently produces acoustic noise and vibration caused by torque ripple. Applications of these motors where silent operation is desirable have thus been limited. In this paper, a new stator pole face having a non-uniform air-gap and a pole shoe attached to the lateral face of the rotor pole are suggested in order to minimize torque ripple. The effects of each design parameter are validated using a time-stepping finite element method. The parameters are optimized by utilizing response surface method (RSM) combined with (1+1) evolution strategy. The result shows that the optimized shape gives higher average torque and drastically reduced torque ripple.

스위치드 릴럭턴스 전동기의 스테이터 형상에 따른 토크량 계산에 관한 연구 (A Study on the SRM Torque Computation According to Different Stator Pole Shapes)

  • 조희;이종우;김경화
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.693-696
    • /
    • 2011
  • The SRM (Switched Reluctance Motor) is composed of silicon steel plates where the rotor structure is simple and laminated without coil winding or permanent magnet, making it mechanically robust and its maintenance and repair excellent. Applying SRM as traction motor for railway vehicle is given consideration because of its ruggedness capability in severe loading condition and its compact structure. Optimal design of SRM is needed to reduce torque ripple to apply SRM for railway traction drive because SRM has high torque ripple. In this paper, switched reluctance motor with three different stator pole shapes is taken for magnetic analysis using 3d finite element method to apply SRM as traction drive for railway vehicle. It is observed that the model 3 added Tooth Tang Depth and Slot Round to stator shape gives the improved inductance and torque characteristic.

  • PDF

직병렬권선방식 전환을 통한 견인용 SRM 토크특성 개선 (Torque Characteristic Improvement of SRM for Traction Drive using Series-Parallel Winding Connection)

  • 김태형;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.3-5
    • /
    • 2008
  • This paper presents a hybrid winding connection method for torque characteristics improving of a traction SRM. In order to get a high torque in wide speed range and torque ripple reduction, series and parallel winding connection are changed according to operating speed. From the analysis of torque character operation mode and efficiency, the proposed control scheme is verified.

  • PDF

유한요소해석을 이용한 조향장치 토크센서의 설계에 관한 연구

  • 양현익;김용기;노병옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.826-829
    • /
    • 1995
  • The oil-pressure type torque sensor has been adopted in steering system of major automobiles. However, it has been well known that this type of torque sensor needed many subcomponents and produced inaccurate responses. This paper intends to suggest new type of torque sensor based on the shape design by using finite element. A dedicated mesh generation, analysis and post result display program has been developed. As for shape design purpose, the half shape of torque sensor is considered. The result of this study has shown that the design automation for precise torque sensor for control of high velocity rotation shaft can be achieved whithout any expensive investment to the design software.

  • PDF

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

철손과 포화를 고려한 동기 릴럭턴스 모터의 최대토크제어 (Maximum Torque Control of Synchronous Reluctance Motor including iron loss and saturation)

  • 백동기;김민태;황영성;성세진
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권2호
    • /
    • pp.116-122
    • /
    • 2000
  • In the high speed range for salient type synchronous reluctance motor, the effect of iron loss can not be negligible. We have investigated the voltage equations including iron loss from the model that is added the equivalent iron loss in the equivalent inductance in series. In this paper, we derive Ld linear approximate equation from saturation range of Ld, Lq vs applied voltage characteristics and obtain equations including saturation and iron loss related to maximum torque control using Ld. The effect of saturation and iron loss is investigated under maximum torque control. And we show that the proposed maximum torque control scheme achieves the desired performances through experimental results.

  • PDF

Comparison of Three Magnet Array-type Rotors in Surface Permanent Magnet-type Vernier Motor

  • Kataoka, Yasuhiro;Takayama, Masakazu;Matsushima, Yoshitarou;Anazawa, Yoshihisa
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Surface permanent magnet-type vernier motors with three magnet array-type rotors (parallel magnetized type, repulsion type, and Halbach type) are compared based on the pull-out torque. It was clarified that increasing the rotor radius increases the pull-out torque at a fixed three-phase alternating voltage. The mechanism for the pull-out torque increase on each magnet array type was different, when the effects of the increase were analyzed based on an induced electromotive force and a synchronous reactance. As a result, the design of the Halbach-type rotor was found to be especially effective for achieving high pull-out torque, because this array type achieves a large induced electromotive force $E_0$ and a small synchronous reactance $x_s$.