• Title/Summary/Keyword: High temperature wear

Search Result 494, Processing Time 0.028 seconds

A Study on the Friction and Wear Characteristics Engine Oil with Mo-DTP and Zn-DTP (Mo-DTP와 Zn-DTP를 혼합 첨가한 엔진 오일의 마찰 마모특성에 관한 연구)

  • 김종호;강석춘;정근우;조원오
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.46-54
    • /
    • 1991
  • As the additives of engine oil, Mo-DTP and Zn-DTP were studied by experimental works. These additives were added to the engine oil with various ratios, which was an attempt to find out the best ratio at which the wear and friction can be reduced effectively; Mo-DTP is belived to be able to decrease the frictioh of the sliding metal, while Zn-DTP is known as a very stable additive for oxidation at high temperature in addition to the good antiwear property. This study showed that the optimum addition ratio of Mo-DTP and Zn-DTP is 3:2. This oil made it possible to slide steel with minimum wear and low friction over various lovels of load at moderate temperature. But as the oil temperature increased, the wear slid with Mo-DTP oil was increased more. The reason of this result was that Mo-DTP deteriorated the property of oil at high temperature by the higher oxidation and viscosity of Mo-DTP oil than that of Zn-DTP oil.

A Study on Wearing Sensation in Accordance with difference in Materials of Aerobic Wear (에어로빅복의 소재 차이에 따른 착용감에 관한 연구)

  • 이미경;류숙희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.1
    • /
    • pp.116-126
    • /
    • 1998
  • This study was conducted to examine the effect of difference in materials of aerobic wear on both human body's physiological reactions and subjective wearing sensation by comparing and analysing not only cotton sparidex A, B and C but nylon spandex D, E and F used as actually wearing materials. The rectal temperature of type A and I remained at high degree, the type C was higher from after high-speed running but dropped sharply when taking a break finally. Both skin temperature and mean skin temperature dropped sharply due to sweat occurred during physical exercise, and then rose slowly when taking a break. Type A -D and B-I showed that the mean skin temperature remained at high degree when wearing a cotton spandex. Type C's temperature within its aerobic wear was lower than type F while its relative humidity was higher than type F. Wearing sensation showed a change similar to wearing, particularly, which was remarkable in type B-E. Also, it was shown that humidity sensation, tactile sensation and comfort sensation were good when wearing the cotton spandex.

  • PDF

Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings (이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.

Evaluation of temperature effects on brake wear particles using clustered heatmaps

  • Shin, Jihoon;Yim, Inhyeok;Kwon, Soon-Bark;Park, Sechan;Kim, Min-soo;Cha, YoonKyung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.680-689
    • /
    • 2019
  • Temperature effects on the generation of brake wear particles from railway vehicles were generated, with a particular focus on the generation of ultrafine particles. A real scale brake dynamometer test was repeated five times under low and high initial temperatures of brake discs, respectively, to obtain generalized results. Size distributions and temporal patterns of wear particles were analyzed through visualization using clustered heatmaps. Our results indicate that high initial temperature conditions promote the generation of ultrafine particles. While particle concentration peaked within the range of fine sized particles under both low and high initial temperature, an additional peak occurred within the range of ultrafine sized particles only under high initial temperature. The timing of peak occurrence also differed between low and high initial temperature conditions. Under low initial temperature fine sized particles were generated intensively at the latter end of braking, whereas under high initial temperature both fine and ultrafine particles were generated more dispersedly along the braking period. The clustered correlation heatmap divided particle sizes into two groups, within which generation timing and concentration of particles were similar. The cut-off point between the two groups was approximately 100 nm, confirming that the governing mechanisms for the generation of fine particles and ultrafine particles are different.

Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 마모특성)

  • 부후이후이;송정일
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.75-84
    • /
    • 2003
  • The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/A12O3/Al and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, $\textrm{Al}_2\textrm{O}_3$ particles and SiC particles on the wear behavior of the composites were investigated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction(COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.

Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water (Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동)

  • Lee, Kwon-Yeong;Oh, Young-Min;Lee, Min-Woo;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF

Wear Behavior of SUS304 Stainless Steels in Corrosive Environment (부식 환경에서 SUS304 스테인레스 강의 마모 거동)

  • Lee Kwang-Jin;Yoon Sang-Don;Koo Young-Pil;Kim Hyung-Ja
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • Wear behavior of self-mated stainless steels in NaCl solution has been investigated. The experiment was done in the corrosive liquid of which NaCl concentration of $0\~3\%$ and temperature of $15\~90^{\circ}C$. Two kinds of wear type were observed: one is 'severe wear' type which shows gradually increasing wear volume with increasing sliding distances, the other is 'mild wear' type which shows change of wear rate from high value to low at transition distance. The specific wear rate in severe wear type was not sensitive to the liquid temperature and concentration of NaCl but stable at value of $1\times10^{-3}\;mm^3$ approximately.

The Sliding Wear Characteristics of the Carbon Steel Castings against High Carbon Steel Wire Rods (탄소주강품과 경강선재간의 미끄럼 마멸특성)

  • 류중북;채영훈;김석삼
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • The sliding wear characteristics of the crane sheave were investigated using a pin-on-disk rig tester. The experiment was conducted using a high carbon steel wire that was upper material, also carbon steel castings that was disk material. There are various operating conditions in this work. At the room temperature, we carried out the wear test under a grease lubrication and dry condition. The results of wear test showed that an annealed-casted have lower, also the wear curves are linearly increased with increasing of sliding distance. For the specific wear rate of annealed-casted, the wear resistance was increased with decreasing diameter of wire. The wear of a wire and a disk have a different mechanism, the one is the abrasive wear due to fatigue wear under lubrication, another is the adhesion wear under dry condition.