• 제목/요약/키워드: High temperature reactor

검색결과 986건 처리시간 0.026초

Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex

  • Marcos S. Sena;Yassin A. Hassan
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3320-3325
    • /
    • 2023
  • The scaled water-cooled Reactor Cavity Cooling System (RCCS) experimental facility reproduces a passive safety feature to be implemented in Generation IV nuclear reactors. It keeps the reactor cavity and other internal structures in operational conditions by removing heat leakage from the reactor pressure vessel. The present work uses Flownex one-dimensional thermal-fluid code to model the facility and predict the experimental thermal-hydraulic behavior. Two representative steady-state cases defined by the bulk volumetric flow rate are simulated (Re = 2,409 and Re = 11,524). Results of the cavity outlet temperature, risers' temperature profile, and volumetric flow split in the cooling panel are also compared with the experimental data and RELAP system code simulations. The comparisons are in reasonable agreement with the previous studies, demonstrating the ability of Flownex to simulate the RCCS behavior. It is found that the low Re case of 2,409, temperature and flow split are evenly distributed across the risers. On the contrary, there's an asymmetry trend in both temperature and flow split distributions for the high Re case of 11,524.

초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석 (CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop)

  • 윤철;홍성덕;노재만;김용완;장종화
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.553-561
    • /
    • 2010
  • 한국원자력연구원에서는 초고온가스로를 모사할 수 있는 중형 헬륨 회로를 건설 중에 있다. 이 실험헬륨 회로에서 두 개의 전기 가열기가 헬륨 유체를 1 ~ 9 MPa 의 압력 하에서 $950^{\circ}C$ 까지 가열하게 된다. 이 실험 헬륨 회로의 설계 사양을 최적화하기 위하여, 본 연구에서는 두 개의 가열기 중 하류에 위치한 고온헬륨가열기 안의 복합열전달 현상을 전산유체역학으로 해석하였다. 해석 결과에서 헬륨 가열기 내 최대 온도는 허용 한계를 넘지 않았고, 이로써 선정된 기하구조의 열적 특성은 설계요건을 만족함이 확인되었다.

실험실 수준의 반응조 온도가 양돈폐수중 질소, 인의 처리에 미치는 영향 (Effect of Temperature on Treatment of Nitrogen and Phosphorus of Pig Wastewater in Bench Scale Reactor)

  • 박석환
    • 한국환경보건학회지
    • /
    • 제21권1호
    • /
    • pp.86-92
    • /
    • 1995
  • This study was performed to evaluate the effect of temperature on operating parameters for reactor in pig wastewater treatment using sequencing batch reactor method which is one of the biological treatment methods. Study was accomplished by experimental apparatus of bench scale, and the degradation rate coefficient and temperature correction factor were derived. The followings are the conclusions that were derived from this study. 1. In the characteristics of pig wastewater, concentrations of TKN and T-P were very high as 590 mg/l and 40 mg/l, respectively. 2. Removal efficiency of BOD and $COD_{Mn}$ as organic compound indicators were the highest mark as 97% at 25$\circ$C. 3. When temperature was incresed from 10$\circ$C to 25$\circ$C, removal efficiencies of TKN and T-P were proportionally increased. Especially, the former was greatly effected by temperature of reactor. 4. In experiment of bench scale, the degradation rate coefficients were increased as temperature increased, but decreased at the temperature range of 25~35$\circ$C. Temperature adjustment coefficients for $COD_{Mn}$, BOD, TKN and T-P were 1.1460, 1.1356, 1.1140 and 1.0565, respectively.

  • PDF

Influencing Parameters on Supercritical Water Reactor Design for Phenol Oxidation

  • Akbari, Maryam;Nazaripour, Morteza;Bazargan, Alireza;Bazargan, Majid
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.85-93
    • /
    • 2021
  • For accurate and reliable process design for phenol oxidation in a plug flow reactor with supercritical water, modeling can be very insightful. Here, the velocity and density distribution along the reactor have been predicted by a numerical model and variations of temperature and phenol mass fraction are calculated under various flow conditions. The numerical model shows that as we proceed along the length of the reactor the temperature falls from above 430 ℃ to approximately 380 ℃. This is because the generated heat from the exothermic reaction is less that the amount lost through the walls of the reactor. Also, along the length, the linear velocity falls to less than one-third of the initial value while the density more than doubles. This is due to the fall in temperature which results in higher density which in turn demands a lower velocity to satisfy the continuity equation. Having a higher oxygen concentration at the reactor inlet leads to much faster phenol destruction; this leads to lower capital costs (shorter reactor will be required); however, the operational expenditures will increase for supplying the needed oxygen. The phenol destruction depends heavily on the kinetic parameters and can be as high as 99.9%. Using different kinetic parameters is shown to significantly influence the predicted distributions inside the reactor and final phenol conversion. These results demonstrate the importance of selecting kinetic parameters carefully particularly when these predictions are used for reactor design.

U.S. GENERATION IV REACTOR INTEGRATED MATERIALS TECHNOLOGY PROGRAM

  • Corwin William R.
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.591-618
    • /
    • 2006
  • An integrated R&D program is being conducted to study, qualify, and in some cases, develop materials with required properties for the reactor systems being developed as part the U.S. Department of Energy's Generation IV Reactor Program. The goal of the program is to ensure that the materials research and development (R&D) needed to support Gen IV applications will comprise a comprehensive and integrated effort to identify and provide the materials data and its interpretation needed for the design and construction of the selected advanced reactor concepts. The major materials issues for the five primary systems that have been considered within the U.S. Gen IV Reactor Program-very high temperature gas-cooled, supercritical water-cooled, gas-cooled fast spectrum, lead-cooled fast spectrum, and sodium-cooled fast spectrum reactors-are described along with the R&D that has been identified to address them.

Hydrogen production using high temperature reactors: an overview

  • Deokattey, Sangeeta;Bhanumurthy, K.;Vijayan, P.K.;Dulera, I.V.
    • Advances in Energy Research
    • /
    • 제1권1호
    • /
    • pp.13-33
    • /
    • 2013
  • The present work is an attempt to provide an overview, about the status of R&D and current trends in Hydrogen Production using High Temperature Reactors. Bibliographic references from the INIS database, the Science Direct database and the NTIS database were downloaded and analyzed. Ten year data on the subject, published between 2001 and 2010, was selected for the study. Appropriate qued ry formulations on these databases, resulted in the retrieval of 621 unique bibliographic records. Using the content analysis method, all the records were analyzed. Part One of the analysis details Scientometric R&D indicators, Part Two is a subject-based analysis, grouped under: A. International Initiatives and Programmes for Hydrogen Production; B. European R&D initiatives for Hydrogen production; C. National Initiatives and Programmes for Nuclear Hydrogen Production; D. Reactor Technologies for Nuclear Hydrogen production; E. Fuel Developments; F. Hydrogen Production Processes using HTRs and G. Materials Consideration for Nuclear Hydrogen Production. The results of this analysis are summarized in the study.

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

소형가스루프 시험조건에서 소형 공정열교환기 시제품의 고온구조해석 (High-Temperature Structural Analysis on the Small-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop)

  • 송기남;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2012
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In order to properly evaluate the high-temperature structural integrity of the small-scale PHE prototype, it is very important to impose a proper constraint condition on its structural analysis model. For this effort, we tried to impose several constraint conditions on the structural analysis model and consequently fixed a proper and effective displacement constraints.

압력용기용 SA516/70강의 고온파괴인성평가 (Evaluation on High Temperature Fracture toughness of Pressure Vessel SA516/70 Steel)

  • 박경동;김정호;윤한기;박원조
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.99-104
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{lc}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are$J_{lc}$ $J_{lc}$ value at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{lc}$ tests were performed on SA516/70 carbon steel plate and test results were analyzed according to ASTM E 813-87, ASTM E 813-89 and ASTM E 1152-87.safety and integrity are required for reactor pressure vessels because, they are operated in high temperature. There are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness($J_{lc}$) and J-$\Delta$a of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ according to unloading compliance method.

  • PDF

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.