• 제목/요약/키워드: High temperature properties

검색결과 6,445건 처리시간 0.038초

Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가 (Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy)

  • 정수진;김동진
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

고온 가열에 따른 섬유혼입 고강도 콘크리트의 강도특성 변화 (Strength Properties of the Fiber Mixed High Strength Concrete at Elevated Temperature)

  • 김상식;김성수
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.53-58
    • /
    • 2008
  • This study is to investigate experimentally residual strength properties of the high strength concrete containing the hybrid of nylon and polypropylene fiber at elevated temperature. Test results showed that specimens heated up to $300^{\circ}C$ exhibited similar strength properties to the one at room temperature. This result is significantly different from previous studies. but specimens heated over $400^{\circ}C$ showed dramatic decrease indicating similar tendency. For the residual strength properties, one at $300^{\circ}C$ even increased 10%, which is also different from previous studies, but it significantly decreased in $400^{\circ}C$ as widely expected. Melted pores by organic fibers in concrete specimens was observed with FE-SEM. For the density of concrete in elevated temperature, internal system in $200^{\circ}C$ had even denser than in $20^{\circ}C$, but was collapsed in $400^{\circ}C$.

마그네슘 판재성형을 위한 인장 및 압축실험을 통한 기계적 물성 평가 (Evaluation of Mechanical Properties for Magnesium Sheet Forming by Tension and Compression Tests)

  • 오세웅;추동균;이준희;강충길
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.635-641
    • /
    • 2005
  • The crystal structure of magnesium was hexagonal close-packed (HCP), so its formability was poor at room temperature. But formability was improved in high temperature with increasing of the slip planes. Purpose of this paper was to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature was increased, yield·ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) were decreased. But strain rate sensitivity (m) was increased. As strain-rate increased, yield·ultimate strength, K-value, and work hardening exponent (n) were increased. Also, microstructures of grains fined away at high strain-rate. These results would be used in simulations and manufacturing factor fer warm and hot forming process.

열간등압소결 된 고속도 공구강의 미세조직 및 기계적 특성 (Microstructure and Properties of HIPped P/M High Speed Steels)

  • Gang Li;Park, Woojin;S. Ahn
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.35-35
    • /
    • 1997
  • High$\cdot$speed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.

  • PDF

주조 합금 Alloy 718에서 미세조직과 인장특성에 미치는 열처리의 영향 (Effect of Heat-treatment on Microstructure and Tensile Properties in Cast Alloy 718)

  • 도정현;김인수;최백규;정중은;정인용;조창용
    • 한국주조공학회지
    • /
    • 제36권5호
    • /
    • pp.167-173
    • /
    • 2016
  • The effect of various types of heat-treatment on the mechanical properties of cast Alloy 718 has been investigated. Cast Alloy 718 bars were subjected to 'standard heat-treatment'_(SHT), 'HIP (Hot Isostatic Pressing) heat-treatment'_(HHT), and 'HIP-simulated heat-treatment'_(HS). In the absence of long time high temperature heat-treatment, a small amount of Laves phase remained in the 'SHT' specimen, and needle shaped ${\delta}$ precipitated in the vicinity of the Laves phase. Due to the formation of the Laves and ${\delta}$ phases in the 'SHT' specimen, it exhibited lower tensile properties than those of the others_specimens. On the other hand, the Laves phase was completely dissolved into the matrix after 'HHT' and 'HS' treatments. It is known that isostatic pressure reduces the self-diffusion coefficient, because of the lower self-diffusivity under HIP conditions in the interdendritic region, Nb segregation and the high amount of ${\gamma}^{{\prime}{\prime}}$ precipitation that occurs. Due to the higher fraction of coarse ${\gamma}^{{\prime}{\prime}}$ phases, the 'HHT' treated Alloy 718 showed excellent tensile strength.

3-TZP/SiC 복합체의 제조 및 기계적 성질 (Preparation and Mechanical Properties of 3Y-TZP/SiC Composites)

  • 이홍림;이형민
    • 한국세라믹학회지
    • /
    • 제29권11호
    • /
    • pp.877-887
    • /
    • 1992
  • Tetragonal zirconia powder with 3 mol% Y2O3 mas mixed with up to 30 vol% of ${\beta}$-SiC powders, and the mixtures were hot-pressed at 1500$^{\circ}C$ for 60 min under a pressure of 30 MPa in Ar atmosphere. Flexural strength and fracture toughness were measured at room-and high-temperature (1000$^{\circ}C$). Evolution of microstructure was also conducted to investigate the effects of SiC addition on the properties of 3Y-TZP ceramics. Average grain size of the composites was about 0.5 $\mu\textrm{m}$, and decreased with SiC addition. Both room- and high-temperature mechanical properties of the composites were improved with SiC content. Particularly, high-temperature strength and fracture toughness of 3Y-TZP/30v/o SiC composite were twice as high as those of 3Y-TZP. The hardness of the composites also increased with SiC content and reached maximum value at 3Y-TZP/30v/o SiC composite.

  • PDF

플라이애쉬를 다량 치환한 콘크리트의 양생온도에 따른 강도성상 (Strength Properties by Curing Temperature of High Volume Fly-Ash Concrete)

  • 이동하;정근호;백민수;김성식;임남기;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.63-66
    • /
    • 2002
  • In this study, it does a high volume flyash substituted concrete experiments in two curing temperature circumstances - 35$^{\circ}C$, 2$0^{\circ}C$. High volume flyash concrete is tested in fresh concrete properties and hardeded concrete properties. In the fresh concrete test items, there is slump, air contents, concrete setting tests. 3, 7, and 28 days water curing compressive strength is measured in the hardened concrete test. The purpose of this study is to submit a various flyash concrete data for application to field. The result of this study is that the best strength is developed at the plain concrete cured 2$0^{\circ}C$ and Mixing F43 shows the best strength among specimens which cured at 35$^{\circ}C$

  • PDF

피스톤 방식의 고온·고압 뿜칠장치를 이용한 방수 시공 기술 공법에 관한 연구 (An Study on the Development of Waterproofing Execution Technology With high Temperature and Spray Equipments of Piston Type)

  • 문유석;최은규;최성민;곽규성;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.7-12
    • /
    • 2008
  • We constructed Seal type waterproofing with adhesive and swelling properties in the field of construction work as yet. But we have many problems of seal type waterproofing with adhesive and swelling properties for construction. Because it has high viscosity, so wokers are too adhered for the work. So, we developed and applied about the high temperature and spray equipments of piston type better than before. We able to be expect that cost reduction and increase construction ability by high temperature and spray equipments of piston type.

  • PDF

AZ61 마그네슘 압출재의 압출 온도에 따른 기계적 특성 및 고주기 피로 특성 (Effect of Extrusion Temperature on Mechanical Properties and High-cycle Fatigue Properties of Extruded AZ61 Alloy)

  • 김예진;차재원;김영민;박성혁
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, a commercial AZ61 magnesium alloy is extruded at 300 ℃ and 400 ℃ and the microstructures, mechanical properties, and high-cycle fatigue properties of the extruded materials are investigated. Both extruded materials have a fully recrystallized microstructure with no Mg17Al12 precipitates. The average grain size and maximum basal texture intensity of the extruded material increase with increasing extrusion temperature. The material extruded at 400 ℃ (AZ61-400) has higher tensile yield strength and lower compressive yield strength than the material extruded at 300 ℃ (AZ61-300) because of the stronger basal texture of the former. Because of coarser grain size, the tensile elongation of AZ61-400 is lower than that of AZ61-300. Despite the differences in microstructures and tensile/compressive properties, the two extruded materials have the same fatigue strength of 110 MPa. This is because the finer grain size of AZ61-300 causes an increase in fatigue strength, but its weaker texture causes a decrease in fatigue strength. In both extruded materials, fatigue cracks initiate at the surface of fatigue specimens at all stress amplitudes tested.

핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가 (Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor)

  • 공유식;윤한기;남승훈
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.