• Title/Summary/Keyword: High temperature gas separation

Search Result 82, Processing Time 0.02 seconds

Efficiency Estimation for Desalination System of Seawater Using Reverse Osmosis Membrane (역삼투압막 해수담수화 장치의 미네럴 분리 성능평가)

  • Moon, Deok-Soo;Jung, Dong-Ho;Kim, Hyeon-Ju;Shin, Phil-Kwon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2005
  • When external pressure higher than osmosis pressure is reversely derived into solution, its solvent is moved into the solution having lower concentration, which is called 'reverse osmosis'. We investigated the desalination application of deep ocean water using reverse osmosis pressure of $40-70\;kgf/cm^2$ We observed how to operational factor j like flow rate, water temperature and pressure have effect on efficiency of reverse osmosis membrane and salts rejection. Fluxes of reverse osmosis membrane are directly proportional to water temperature and pressure. However, salts rejection rates are positively correlated with pressure and inversely proportional to water temperature. Separation efficiencies of osmosis membrane for major elements such as $Mg^{2+},\;Ca^{+2},\;Na^+\;and\;K^+$ are as follows in a strong electrolysis solution like seawater; $Ca^{2+},\;Mg^{2+}>K^+>Na^+$. Rejection rates of $Mg^{2+}\;and\;Ca^{2+}$ that have high electric charges are over 99% and show positively correlation with water temperature. Rejection rates of $Na^+$ having low electric charge is observed to be 98%-99%, which rates is much lower than those of $2^+$ charged ions like $Ca^{2+}\;and\;Mg^{2+}$. Ion rejection rates of boron, B, are much low because boron is present il free state or gas phase in seawater. Boron concentration in desalination water is over criteria of Korean drinking water, 0.3 mg/L. However, we could satisfied with the criteria of drinking water under the operation condition like temperature $5^{\circ}C$ and pressure $70kgf/cm^2$, using the relationship that rejection rates of boron is proportional to pressure and is inversely proportional to water temperature

  • PDF

Extraction of Pigment from Sea Mustard ( Undaiia pinnatinda) using Supercritical Carbon Dioxide and Entrainer (초임계 이산화탄소와 보조용매를 이용한 미역으로부터 색소 추출)

  • HONG Seok-Ki;CHUN Byung-Soo;PARK Sun-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-217
    • /
    • 2001
  • In order to develop a new separation technology, supercritical fluid extraction process was used to produce high purity pigments and fatty acids from seaweed (Undaria pinnatifida). Supercritical carbon dioxide was used as a solvent and ethanol as an entrainer. The sample was treated by a frozen drier and experiments were conducted with a semi-batch flow system at various operating conditions (pressure range, $10.3\~17.2$ MPa; temperature range, $30\~45^{\circ}C$: particle size, $500\~1,000{\mu}m$ extraction time, 60 min). Characteristics of the recovered pigment (chlorophyll a) and fatty acids were determined by UV-spectrophotometry and gas chromatography, respectively. The highest extraction efficiency for fatty acids and pigments was achieved at 12.4 MPa, $35^{\circ}C$, $500{\mu}m$of seaweed size.

  • PDF