• 제목/요약/키워드: High strength copper alloy

검색결과 51건 처리시간 0.027초

고강도 및 저온 고충격 주강소재를 이용한 해양플렌트용 커넥트 주강부품 개발 (A Development of Connection Piece Steel Casting for the Offshore Structures Using High Impact Value with Low Temperature & High Strength Casting Steel Material)

  • 김태원;박상식;강충길
    • 한국주조공학회지
    • /
    • 제30권4호
    • /
    • pp.151-156
    • /
    • 2010
  • The high-strength low-alloy (HSLA) steels have low carbon contents (0.05~0.25% C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구 (The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite)

  • 백영민;이상관;엄문광;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

원자력 발전소용 이종재 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구 (Study on Optimization of Dissimilar Friction Welding of Nuclear Power Plant Materials and Its Real Time AE Evaluation)

  • 권상우;오세규;유인종;황성필;공유식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.42-46
    • /
    • 2000
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high sts good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material who alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the develop optimizing of friction welding with more reliability and more applicabililty but also the development of in-process rear quility(such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear component of Cu-1Cr-0.1Zr alloy to STS316L steel were performed.

  • PDF

가스분무주조 Cu-Sn-Ni-Si 합금의 미세조직 및 상온 인장성질 (Microstructure and Tensile Properties of Spray Cast Cu-Sn-Ni-Si Alloy)

  • 강희수;이언식;이규창;백경호
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.470-476
    • /
    • 2010
  • In this study, Cu-10Sn and Cu-10Sn-2Ni-0.2Si alloys have been manufactured by spray casting in order to achieve a fine scale microstructure and high tensile strength, and investigated in terms of microstructural evolution, aging characteristics and tensile properties. Spray cast alloys had a much lower microhardness than continuous cast billet because of an improved homogenization and an extended Sn solid solubility. Spray cast Cu-Sn-Ni-Si alloy was characterized by an equiaxed grain microstructure with a small-sized (Ni, Si)-rich precipitates. Cold rolling of Cu-Sn-Ni-Si alloy increased a tensile strength to 1220 MPa, but subsequent ageing treatment reduced a ultimate tensile strength to 780 MPa with an elongation of 18%.

Cu-Cr 합금의 인장강도와 전기전도도에 미치는 Cr 첨가량 및 가공열처리의 영향 (Effects of Cr content and Thermomechanical Treatment on Tensile Strength and Electrical Conductivity of Cu-Cr Alloys)

  • 김기태;정운재;신한철;최종술
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.17-21
    • /
    • 2001
  • The effects of Cr content above its solubility limit and thermomechanical treatment on tensile strength and electrical conductivity of Cu-Cr alloys were studied to obtain optimum Cr content exhibiting a high tensile strength without degradation of electrical conductivity. The increase in Cr content above the solubility limit increased tensile strength of Cu-Cr alloys without deterioration of the electrical conductivity. The electrical conductivity was not affected by cold rolling. The electrical conductivity of a Cu-3.5%Cr alloy subjected to cold rolling ${\rightarrow}$ aging treatment ($450^{\circ}C{\times}1hr$) ${\rightarrow}$ cold rolling was equal to that of the alloy subjected to cold rolling ${\rightarrow}$ aging treatment. However, the tensile strength of the alloy subjected to the former thermomechanical treatment was superior to that of the alloy subjected to the latter thermomechanical treatment at all the deformation degrees.

  • PDF

Cu-1.6Co-0.38Si 합금의 열처리에 따른 경도 및 전기전도도의 변화 (Hardness and Electrical Conductivity Changes according to Heat Treatment of Cu-1.6Co-0.38Si Alloy)

  • 곽원신;이시담
    • 열처리공학회지
    • /
    • 제33권5호
    • /
    • pp.226-231
    • /
    • 2020
  • The Cu-Co-Si alloy shows high strength by forming precipitates by aging precipitation heat treatment of supersaturated solid solution treated with solution treatment such as Cu-Ni-Si alloy, and the Co2Si precipitated phase is dispersed in the copper matrix. The effect of aging treatment on the microstructure, mechanical and electrical properties of Cu-Co-Si alloys for electronic devices was investigated. As a results of SEM/EDS analysis, it was found that Co2Si precipitates of 30~300 nm size were distributed in grains. By performing the double aging treatment, it was possible to improve the strength and electrical conductivity by dispersing the fine precipitate evenly.

동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접에서 마찰압력이 접합강도와 파단특성에 미치는 영향 (Effects of Friction Pressure on Bonding Strength and a Characteristic of Fracture in Friction Welding of Cu to Cu-W Sintered Alloy)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.90-98
    • /
    • 1997
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of friction pressure on bonding strength and a charicteristic of fracture. The tensile strength of the friction welded joint was increased up to 90% of the Cu base metal under the condition of friction time 1.2 sec, friction pressure 4.5kgf/$\textrm{mm}^2$ and upset pressure 10kgf/$\textrm{mm}^2$. From the results of fracture surface analysis, the increase of friction pressure could remarkably decrease the force and the time to be normally acted on weld interface. The W particles which were included in the plastic zone of Cu side could induce fracture adjacent to the weld interface because their existance in Cu induces a decrease in available section area and an increase in notch effect. Therefore, the tensile strength was decreased at high friction pressure (6kgf/$\textrm{mm}^2$) because the destruction of W was increased by an increase in mechanical force and crack was formed at weld interface.

  • PDF

해양구조물용 저온 고강도 Casting Steel 소재 개발 (A Study on the Low Temperature & High-strength Low-alloy Material for Casting Steel of the Offshore Structures)

  • 이수호;한기형;배재류;김태원;박상식;강충길
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.426-431
    • /
    • 2008
  • The high-strength low-alloy(HSLA) steels have low carbon contents($0.05{\sim}0.25%$ C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

The Influence of Precipitated Phase in Al-4%Cu Alloy under High Magnetic Field

  • Jun, Jiang;Lee, Hyun-Jun;Min, Qi;Park, Won-Jo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.239-243
    • /
    • 2008
  • Nonferrous metals have a very important position in industry. At present, parts of shipbuilding, automobile, and aircraft etc. are designed and manufactured accurately, simultaneity need light-weight and high-strength. Aluminum copper alloys are one kind of typical precipitation hardening alloy which has been widely used. It is interesting to investigate transformation behavior of precipitated phase in such kind of alloys under high magnetic field. Transformation of materials under high magnetic field is many different compared with conventional condition. The author prepared the Al-4%Cu alloy.

  • PDF

후판 Al 6061합금의 전자빔용접 특성 평가 (The Characteristic Evaluation of Electron Beam Welding for Al 6061 alloy with thick-thickness plate)

  • 정인철;심덕남;김용재
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.68-70
    • /
    • 2006
  • For the aluminum material of the thick-thickness more than 100mm Penetration depth Electron beam welding is effectively applicable with a characteristic of high energy intensity. But Al 6061 alloy has high crack sensitivity due to minor alloys, which are silicon, magnesium, copper etc. With a sample block of 135mm thickness EBW test was performed in vertical position. As tensile strength has $210{\sim}220N/mm^2$ with weld area broken. Bend test shows low ductility with fracture of partly specimens. Chemical contents of alloys show no difference between weld and base metal. Defect in middle weld area figures out typical hot crack due to low melting materials. Micro structure of weld area has some difference compare to HAZ and base metal. As a result of EBW test for Al 6061 alloy, it shows that weld defect could be occurred even though establishing of optimum weld parameter condition.

  • PDF