• Title/Summary/Keyword: High step-up gain

Search Result 48, Processing Time 0.023 seconds

A Transformer-less Boost Converter with High Gain and Low Current Ripple for Fuel Cell Application (연료전지 응용을 위한 높은 승압비와 낮은 전류리플을 갖는 무변압기형 부스트 컨버터)

  • Yang, Jin-Young;Park, Chan-Ki;Choi, Se-Wan;Nam, Seok-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.79-87
    • /
    • 2008
  • Boost Converters have been used to step up and regulate the low and widely varing voltage from the fuel cell. A transformer-less boost converter which does not have lossy, bulky, and costly high frequency transformers has an advantage in applications where galvanic isolation is not required. In this paper a new transformer-less boost converter is proposed. The proposed boost converter has practically usuable 6 to 8 times of step up ratio and is suitable for fuel cell applications due to very low input and output current ripples. The proposed converter is verified through the theorical analysis, simulation and experimental waveform.

An Improved Non-Isolated 3-Level High Step-Up Boost Converter (개선된 비절연형 3-레벨 고승압 부스트 컨버터)

  • Kim, Su-Han;Cha, Hon-Nyong;Kim, Heung-Geun;Choi, Byung-Cho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.342-348
    • /
    • 2013
  • In this paper, an improved non-isolated 3-level high step-up boost converter is proposed. By using the well known duality principle, the proposed converter is derived from two-phase buck converter. Compared with the traditional boost converter and 3-level boost converter, the proposed converter can obtain very high voltage conversion ratio and the voltage stress of switching devices and diodes is only 1/4 of the output voltage. A 1 kW prototype converter is built and tested to verify performances of the proposed converter.

A Non-Isolated 3-Level High Step-Up Boost Converter With Output Voltage Balancing (출력 전압 밸런싱 기능을 가진 비절연형 3-레벨 고승압 부스트 컨버터)

  • Yun, Song-Hyun;Kang, Hyemin;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.464-470
    • /
    • 2015
  • In this paper, a non-isolated three-level high step-up boost converter with output voltage balancing is proposed. By adding one extra inductor to the conventional three-level boost converter, the proposed converter is derived. Compared with the traditional boost converter and the three-level boost converter, the proposed converter can obtain very high voltage conversion ratio, and the voltage and current stress of switching devices and diodes are reduced. A 2.7 kW prototype converter is built and tested to verify performances of the proposed converter.

A Novel Negative-Output High Step-up Ratio DC-DC Converter Based on Switched-Inductor Cell

  • Kim, Ho-Yeon;Moon, Eun-A;Nguyen, Minh-Khai
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.273-279
    • /
    • 2019
  • A high boost dc-dc converter based on the switched-inductor cell (SL-cell) is suggested in this paper. The suggested converter can provide a high voltage gain that is more than 6. Moreover, the voltage gain can be easily increased by extending a SL cell or a modular voltage boost stage. This paper shows the key waveforms, the operating principles at the continuous conduction mode (CCM), and a comparison between the suggested converter and the other non-isolated converters. In addition, the extension of the suggested converter is presented. The simulation results were shown to reconfirm the theoretical analysis.

A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability (넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

High Step-Up Bidirectional DC-DC Converter for Battery Storage System (배터리 저장 시스템용 고승압 양방향 컨버터)

  • Zhang, Hai-Long;Park, Sung-Jun;Kim, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.320-321
    • /
    • 2018
  • A non-isolated high voltage gain bidirectional DC-DC converter for battery storage system has been presented in this paper. The topology is composed of boost converter and traditional SEPIC converter. The proposed converter can achieve higher voltage conversion ratio with reduced voltage and current stresses in the switches. In additional, a reduced number of components are included in this topology. The PSIM simulation is carried to validate the analysis and operation of the converter.

  • PDF

A Non-isolated DC-DC Converter with High Step-up Ratio and Wide ZVS Range (고승압비와 넓은 ZVS 영역을 갖는 비절연 DC-DC 컨버터)

  • Park, Sung-Sik;Choi, Se-Wan;Choi, Woo-Jin;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.315-322
    • /
    • 2009
  • In the conventional boost converter, the actual duty cycle is limited as the output voltage increases due to increased voltage and current stress of the switch and diode and voltage surge caused by diode reverse recovery. In this paper a new non-isolated boost converter suitable for high gain applications is proposed. The proposed converter has voltage gain of around 6 when the duty cycle is 0.5. Since ZVS is achieved under CCM, the proposed converter has wide ZVS range. Also, voltage ratings of switch and diode are the same as one third of output voltage, and ratings of input and output passive components are reduced due to the interleaving. In addition voltage surge caused by diode reverse recovery is negligible due to ZCS turn-off of diodes. Operating principle of the proposed converter is described and validated through theoretical analysis, simulation and experiment.

Ka-band Compact AESA Antenna Unit Design for Seeker

  • Bongmo Kang;Ikjong Bae;Jaesub Han;Youngwan. Kim;Jaehyun Shin;Jihan Joo;Seonghyun Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.330-338
    • /
    • 2024
  • In this paper, a Ka-band high-output active phased array antenna device applicable to small radars and seekers was designed, and the improved performance was studied. The radiation device assembly consists of 1x8 arrangements, and the step flared notch antenna type. It shows low active reflection loss characteristics in broadband, and low loss characteristics by applying the air-strip feeding structure, and is designed to enable beam steering up to 45 degrees. The TRM(transmit receive module) output power is more than 2.0W per channel using GaN HPA in the transmitting path, and satisfies more than 25.0 dB gain and less than 6.0 dB noise figure in the receiving path. Accordingly, the Effective Isotropically Radiated Power(EIRP) of the antenna unit shows the performance of 0.00 dB or more and the receive gain-to-noise temperature ratio(G/T) of 0.00 dB/k or more. For demonstration, we have designed aforementioned planar array antenna which consists of 64 radiating elements having a size within 130 mm x 130 mm x 300 mm and weight of less than 4.9 kg..

A Soft Switching Boost Converter with High Voltage Gain Using a Single Switch (높은 승압비를 가진 공진형 소프트 스위칭 부스트 컨버터)

  • Park, Kun-Wook;Jung, Doo-Yong;Lee, Su-Won;Jung, Yong-Chae;Won, Chung-Yuen;Seo, Kwang-Duck
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.173-175
    • /
    • 2009
  • A dc/dc converter for low voltage of battery application and fuel cell system is required to step up and regulate the low and widely variable voltage. In this paper, we have proposed a soft switching boost converter with high voltage gain using a single switch. Through the theoretical analysis and experimental result, operation modes and characteristics of the proposed topology is verified.

  • PDF

A Buck-Boost Type Charger with a Switched Capacitor Circuit

  • Wu, Jinn-Chang;Jou, Hurng-Liahng;Tsai, Jie-Hao
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, a buck-boost type battery charger is developed for charging battery set with a lower voltage. This battery charger is configured by a rectifier circuit, an integrated boost/buck power converter and a switched capacitors circuit. A boost power converter and a buck power converter sharing a common power electronic switch are integrated to form the integrated boost/buck power converter. By controlling the common power electronic switch, the battery charger performs a hybrid constant-current/constant-voltage charging method and gets a high input power factor. Accordingly, both the power circuit and the control circuit of the developed battery charger are simplified. The switched capacitors circuit is applied to be the output of the boost converter and the input of the buck converter. The switched capacitors circuit can change its voltage according to the utility voltage so as to reduce the step-up voltage gain of the boost converter when the utility voltage is small. Hence, the power efficiency of a buck-boost type battery charger can be improved. Moreover, the step-down voltage gain of the buck power converter is reduced to increase the controllable range of the duty ratio for the common power electronic switch. A prototype is developed and tested to verify the performance of the proposed battery charger.