• Title/Summary/Keyword: High speed wind tunnel test

검색결과 99건 처리시간 0.023초

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

FAST 동체의 공력특성에 대한 수치 및 실험 연구 (Numerical and Experimental Study on the Aerodynamic Characteristics of FAST Fuselages)

  • 한철희;조정보;조진수
    • 한국항공우주학회지
    • /
    • 제35권3호
    • /
    • pp.177-182
    • /
    • 2007
  • 경계요소법을 사용하여 세 가지 유형의 전두부 형상과 비 평면 지면이 FAST 동체의 공력 특성에 미치는 영향을 연구하였다. 본 수치해석 기법을 검증하고 벽면의 영향이 마찰항력에 미치는 영향을 파악하기 위하여 풍동시험을 수행하였다. 채널은 동체의 양력을 증가시키는 효과가 있었다. 최적의 전두부 형상은 동체와 측면 벽 사이의 간격, 동체의 높이와 같은 FAST 및 안내로 설계 조건에 의존하였다. 계산한 유도항력계수 값과 측정한 전항력 값을 비교한 결과 형상 항력은 동체의 고도에 무관하였다. 지면효과를 받지 않는 동체의 형상항력 값을 알고 있다면, 본 수치기법은 고속 지상 운행체의 개념설계에 사용할 수 있다.

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감 (Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator)

  • 이창욱;심주형;한성현;윤수환;김태규
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2015
  • 원통 모델에 공기저항저감 효과를 검증하기 위해서 원통형에 적합한 유연성 플라즈마 구동기를 제작하였다. 다양한 풍속에서 플라즈마 유동제어 풍동시험을 수행하였으며, CFD 해석과 유동가시화를 수행하였다. 풍속이 느린 저속 구간에서는 유동박리가 발생하지 않아 플라즈마 유동제어 효과가 없었다. 풍속 14 m/s 에서 14% 정도 항력이 저감되었으며, 풍속이 증가된 17 m/s 의 경우 항력이 27% 저감되었다. CFD 해석과 유동가시화의 비교를 통해 DBD플라즈마 구동기는 원통 주변의 압력차를 감소시켜 와류의 크기가 줄어든 것으로 확인되었다.

CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구 (A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics)

  • 정영배
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

CFD/CSD 통합 연계기법을 이용한 횡방향 곡률이 있는 날개의 가상 플러터 시험 (Virtual Flutter Test of a Spanwise Curved Wing Using CFD/CSD Integrated Coupling Method)

  • 오세원;이정진;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.355-365
    • /
    • 2006
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved ing model have been effectively conducted using the present advanced computational method with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data file to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험 (Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method)

  • 김동현;오세원;김현정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

An Experimental Study on the Galloping of Inclined Cables

  • 김한수;이도형;김석중
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.137-144
    • /
    • 2002
  • A series of wind tunnel tests was conducted to investigate the existence of the galloping instability of inclined dry cables and also to Identify the influence of some parameters on it. These parameters are the structural damping and cable surface roughness, which may have significant impact on the vibration characteristics. The test results showed both the divergent type of galloping instability and the limited amplitude high wind speed vortex shedding excitation. Galloping instability was observed in only one case. Parametric study shows that the vortex shedding oscillation can be easily suppressed with an increase of structural damping. It was also shown that the instability criterion indicated by earlier research was too conservative compared to the results obtained from the present study.

  • PDF

고속열차의 차간 공간에서 발생하는 소음 특성의 시험적 규명 (Experimental Investigation of Noise Generation from the Inter-coach Spacing of a High-speed Train)

  • 최성훈;박춘수;박준홍;김상수
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.786-791
    • /
    • 2007
  • 고속열차의 속도가 300km/h 이상이 되면 난류의 박리나 와류발산 등에 의한 공력소음의 영향이 지배적이 된다. 본 연구에서는 KTX와 한국형고속열차의 외부에서 발생하는 공력소음, 특히 차간 공간에서 발생하는 소음의 특성을 시험을 통해 규명한다. 차량 실내외의 소음 측정을 통해 이 소음의 특성을 분석하였고, 풍동시험을 통해 머드플랩 사이의 틈의 크기가 저주파 소음 발생에 직접적인 영향을 준다는 것을 규명하였다. 또한 마이크로폰어에이 시험으로 고속열차의 외부에서 발생하는 소음의 주파수 특성을 분석하였다.