• Title/Summary/Keyword: High speed tool steel

Search Result 142, Processing Time 0.025 seconds

Comparison of punch life of powder high speed tool steel and high speed tool steel (분말고속도공구강과 고속도공구강의 펀치 수명 비교)

  • Lee, Woo-Ram;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • A lot of research is being done on metal materials to improve the lifespan of molded parts. As a result, excellent mold materials have been developed that withstand high hardness at high temperatures and frictional heat generated from high-speed cutting. In this study, the press mold life of powder high-speed tool steel and general high-speed tool steel was compared. Powdered high-speed steel is composed of alloying elements such as tungsten, maldividene, cobalt, chromium, and vanadium in steel, which improves wear resistance compared to high-hardness and high-speed tool steels. The mold parts of both steel types were manufactured in the same way from heat treatment to machining, and the powder high-speed tool steel was 66HRC and the high-speed tool steel was 61HRC. As a result of the experiment, it was observed that the number of punching of powder high-speed tool steel was improved by 40-50%, and powder high-speed tool steel had fewer impurities, uniform texture, and excellent surface structure. It has a microscopic structure.

Temperature Distribution of High Speed Tool Steel Rod During High Speed Hot Rolling Procedure (고속열간압연에서 고속도공구강 봉재의 온도분포 해석)

  • Jeong, Hyo Tae;Lee, Soo Yeon;Ha, Tae Kwon;Jung, Jae Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.150-158
    • /
    • 2008
  • The temperature distribution of high speed tool steel rod has been studied during high speed hot rolling procedures. The tool steel rod shows severe temperature gradient during rolling procedures and the temperature at the center of rod are much higher than that at the surface of rod. This temperature gradient accumulated after every rolling procedure and the center of rolled rod could be remelt in some procedures to cause inside defects. In this study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, have been discussed to prevent the temperature increases at the center of rod.

Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method (2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon-Eek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

Wear Behavior of TiN Coatings Deposited on High Speed Steel and Alloy Tool Steel (TiN 코팅된 고속도강과 합금공구강의 마멸거동)

  • 김석삼;서창민;박준목
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.705-712
    • /
    • 1995
  • The wear characteristics and wear mechanisms in TiN coating deposited on high speed steel and alloy tool steel by ion plating were investigated. Pin on V-block wear tester was used for a wear test method. The specimen was composed of three kinds of high speed steel and alloy tool steel which had different hardness by changing the heat treating condition. Three kinds of coating thickness were also applied to each specimen. Microscopic observation of worn surfaces was made by SEM. The scratch test of coating surface by the ion plating showed that critical load to break the coating interface was greater than 50N. The critical load increased with both substrate hardness and coating thickness. The wear resistance of TiN coated high speed steel became 10 times greater than that of non-coated ones. SEM observation showed that leading edge of contact was compressive and trailing edge was under maximum tensile stress and then surface cracking broke out perpendicular to sliding direction.

Evaluation of Tool Wear of P/M High Speed Steel Flat Endmill (분말 고속도공구강 평엔드밀의 공구마멸 평가)

  • Jung, Ha-Seung;Ko, Tae-Jo;Kim, Hee-Sool;Bae, Jong-Soo;Kim, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.154-160
    • /
    • 2002
  • Powder metallurgy(P/M) process has been used for the production of high performance high-speed steels. P/M high speed steel has more uniform and fine microstructure than those of conventional wrought products. Therefore, it offers distinct advantages over conventional tool steels. The superior uniformity of composition and fine microstrucure lead to excellent toughness and less distortion during heat treatment, which in turn can reduce total grinding costs and provides other benefits, such as uniform hardness and increased tool life. From these reasons, milling, hole machining, broaching, and gear manufacturing tools are major applications of P/M high-speed steels. In this research, we evaluated tool wear of flat endmill which is made of P/M high-speed steel from the view point of cutting tool performance.

A Study on Prediction of Cutting Temperature in Flank Face ar High Speed Steel (고속도강공구의 플랭크면 절삭온도 예측에 관한 연구)

  • 전태옥;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Temperature distribution on flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

  • PDF

Prediction of Cutting Temperature in Flank Face at High Speed Steel in Orthogonal Turning (2차원 선삭시 고속도강 공구의 플랭크면 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon--Eak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.222-231
    • /
    • 1996
  • Temperature distribution on the flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junciton imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with igh speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

High Speed Ball End Milling of Hardened Mold Steel (열처리 금형강의 볼엔드밀 고속가공)

  • 양진석;허영무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1418-1423
    • /
    • 2004
  • High speed machining experiment on the heat-treated mold steel(STAVAX and CALMAX of hardness HRc 53) is carried using TiAlN coated ball endmill. Tool life and wear characteristics under the various machining parameters and cooling methods are investigated. Effect of cooling method on life and wear of the tool was compared. For most cases, tool life was not determined by the amount of wear but by th chipping on the cutting edge. It is found that tool manufacturer's cutting parameters generally agrees with the results of this experiment.

  • PDF

An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel (고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구)

  • Yang J. S.;Heo Y. M.;Jung T. S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.57-64
    • /
    • 2006
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRC 55) is carried out using small diameter ball endmills. Tool lift and wear characteristics under the various machining parameters are investigated Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of the tool wear and material removal rate.

An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel (고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구)

  • Heo Y. M.;Jung T. S.;Yang J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.114-120
    • /
    • 2005
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRc 55) is carried out using small diameter ball endmill. Tool lift and wear characteristics under the various machining parameters are investigated. Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of tool wear and material removal rate.

  • PDF