• 제목/요약/키워드: High speed tool

Search Result 1,081, Processing Time 0.024 seconds

A Study on the Characteristic of Machined Surface by High Speed Ball End Milling (고속 볼 엔드밀링의 가공면 특성에 관한 연구)

  • 최종근;양민양;윤재웅
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.126-134
    • /
    • 2001
  • Recently, high productivity and cost reduction becomes the most important target of industries due to the worldwide economic competition. One of these efforts is High Speed Machining(HSM), which reduces machining time with the increase of machining speed such as cutting speed and feedrate. It is very important, especially in case that the portion of machining time in production cost is high. This research suggests optimum cutting conditions to reduce cutting time with minimizing term error. For this study, a comprehensive model representing the texture of machining surface is developed, including rubbing phenomenon on the tip of ball end mill and expanded fibbing zone trajectory caused by tool deflection. Experiments show that the suggested set of feed and pick feed is optimum for maintaining the surface roughness identified by rubbing and low cutting speed in minimum.

  • PDF

The study on improving tool life using compressed chilly air (압축냉각공기를 이용한 공구수명 향상에 관한 연구)

  • 김찬우;이채문;이득우;김정석;정우섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.510-515
    • /
    • 2003
  • High-speed machining generates concentrated Thermal/fractional damage at the cutting edge and rapidly decreases the tool life. This paper is aimed at improving the tool life using compressed chilly air. In this paper, the experiments were carried out in various cutting environments, such as dry, wet and compressed chilly air. Tool life were measured to evaluate machinability in high-speed milling of various materials. With respect to the cutting environment, compressed chilly air increased tool life. However, the wet condition decreased tool life due to the thermal shock caused by excessive cooling.

  • PDF

Compensation for Machining Error included by Tool Deflection Using High-Speed Camera (고속카메라를 이용한 절삭공구변형의 보상에 관한 연구)

  • Bae, J.S.;Kim, G.H.;Yoon, G.S.;Seo, T.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.

The Characteristics of High-speed Noncircular Machining Tool Feed Systme using Linear Motor (리니어 모터를 이용한 고속비진원 가공용 공구이송장치의 특성연구)

  • 서준호;민승환;김성식;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.985-990
    • /
    • 1995
  • Recently, the development of high speed and high precision NC-lathe for piston head machining is needed for the complexity and diversity of the piston head shape used in automobile reciprocating engine. THe piston head has many complex shapes in the aspect of fuel economy, such as ovality, profile, double ovality and recess. Among them, for the maching of the over shape of 0.1~1mm the cutting tool should move periodically symchronized with the rotation of piston workpiece. The cutting tool feeed system must have high positioning accuracy for the precise machining, high speed for the fast maching and high dynamic stiffness for the cutting force. The linear brushless DC motor is used for satisfying these coditions. The ballbush guide and supporting guide using turcite is used for the guidance of the feed drive system. Linear encoder, digital servo ampllifer and controller are used for driving the motor. THis paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Performance Assessment and Contouring Error Prediction of High Speed HMC (고속 HMC 이송계의 운동특성 평가 및 운동오차 예측)

  • 최헌종;허남환;강은구;이석우;홍원표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.375-381
    • /
    • 2004
  • Recently, the evolution in production techniques (e.g. high-speed milling) and the complex shapes involved in modem production design has been increasingly popular. The key to the achievement is a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. The more complex these tool paths the higher the speed and acceleration requirements. But it is very difficult to reach the target for high speed machine tool because of the limitations of servo system and motion control system. However the direct drive design of machine tool axes, which is based on linear motors and which recently appeared on the market, is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, more mechanical simplicity and very higher acceleration and velocity comparing to the traditional system. This paper focused on the performance tests of the high speed horizontal machine tool based on linear motor. Especially, dynamic characteristics were investigated through circular test and circular form machining test is carried out considering many important parameter. Therefore these several experiments is used to be evaluated the model for prediction of circular motion error and circular machined error.

  • PDF

Optimal Cutting Condition of Tool Life in the High Speed Machining by Taguchi Design of Experiments (다구찌 실험 계획법을 이용한 고속가공에서 공구수명 조건의 최적화)

  • Lim, Pyo;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.59-64
    • /
    • 2006
  • High Speed Machining(HSM) reduces machining time and improves surface accuracy because of the high cutting speed and feedrate. Development of HSM makes it allowable to machine difficult-to-cut material and use small-size-endmill. It is however limited to cutting condition and tool material. In the machining operation, it is important to check main parameter of tool life and select optimal cutting condition because tool breakage can interrupt progression of operation. In this study, cutting parameters are determined to 3 factors and 3 levels which are a spindle speed, a feedrate and a width of cut. Experiment is designed to orthogonal array table for L9 with 3 outer array using Taguchi method. Also, it is proposed to inspect significance of the optimal factors and levels by ANOVA using average of SN ratio for tool life. Finally, estimated value of SN ratio in the optimal cutting condition is compared with measured one in the floor shop and reduction of loss is predicted.

  • PDF

Characteristics of tool wear in cutting of glass fiber reinforced platics (GFRP) (유리섬유 강화 플라스틱 절삭에서의 공구마멸특성)

  • 이원평
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.49-56
    • /
    • 1987
  • This paper is a study on the effect of the cutting speed on the tool wear in turning of the glass fiber reinforced plastics. The wear behavior of cutting tool is studied by means of turning, changing the cutting speed and feed in the wide range. Moreover, the theoretical model applicable to the cutting speed of wide range is analysed. The main results obtained are as follows: The relation between the tool wear and the cutting speed is divided into three range in case of the constant cutting distance. 1) At the low cutting speed, the tool wear is independent of the cutting speed, but dependent mainly on the contact length between tool and glass fiber(lst range). 2) At the high cutting speed, the tool wear is independent of the contact length, and dependent on the cutting speed only(2nd range). The tool wear increases in proportion to the cutting speed. 3) At the higher cutting speed than the speed in the 2nd range, the tool wear is independent both of the cutting speed and the contact length(3rd range). 4) In the 3rd range, tool flank wear is constant and is observed that only the wear of cutting edge increases.

  • PDF

Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill (소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가)

  • 정연행;이태문;강명창;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Prediction of Cutting Temperature in Flank Face at High Speed Steel in Orthogonal Turning (2차원 선삭시 고속도강 공구의 플랭크면 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon--Eak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.222-231
    • /
    • 1996
  • Temperature distribution on the flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junciton imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with igh speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.