• 제목/요약/키워드: High segmentation

검색결과 695건 처리시간 0.025초

Mean Shift Segmentation을 이용한 스마트폰 기반의 수채화 효과 변환 기법 (Smartphone Based Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation)

  • 이상걸;김철기;차의영
    • 한국정보통신학회논문지
    • /
    • 제14권11호
    • /
    • pp.2413-2418
    • /
    • 2010
  • 본 논문에서는 최근 급속히 보급되고 있는 스마트폰에서 촬영한 사진 영상을 수채화 효과가 나도록 변환하는 기법에 대하여 제안한다. 제안하는 수채화 효과 변환 기법은 영상처리 분야에서 많이 사용하는 양방향 필터링(bilateral filtering)과 평균 이동 분할(mean shift segmentation)을 이용한다. 먼저 입력 영상을 스마트폰 화면 해상도로 크기 변환한 후 양방향 필터링을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 다음으로 양방향 필터링을 거친 영상에서 평균 이동분할을 수행하여 최종영상을 생성한다. 실험을 통하여 스마트폰의 연산속도를 고려한 평균 이동 분할의 파라미터 값을 설정하여 다양한 사진에 대하여 수채화 효과가 잘 나타나는 것을 확인하였다.

대각선 방향 픽셀에 기반한 이방성 확산을 이용한 영상 분할 (Image Segmentation Using Anisotropic Diffusion Based on Diagonal Pixels)

  • 김희숙;윤효순;;유재명;이귀상
    • 한국콘텐츠학회논문지
    • /
    • 제7권2호
    • /
    • pp.21-29
    • /
    • 2007
  • 이방성 확산은 영상 분할 분야에서 광범위하게 사용되는 방식이다. 기존의 전통적인 이방성 확산 [1]-[6]에서는 이미지의 대각선 방향을 고려하지 않고 4 방향(동, 서, 남, 북)을 주로 이용하였다. 전통적인 이방성 확산(Diffusion)을 이용한 영상 분할은 확산이 반복될수록 윤곽선 정보를 적절히 유지 못하거나 잡음을 제거하지 못함으로써 웨터쉐드(Watershed) 알고리즘을 적용하는 경우 과다 분할을 피할 수 없다는 단점을 갖고 있다. 본 논문에서는 전통적인 이방성 확산의 이러한 단점을 보완하기 위하여 대각선 방향에 기반한 새로운 이방성 확산을 제안하고, 워터쉐드를 이용한 영상 분할 방법을 적용하였다. 실험 결과 본 논문에서 제안한 대각선 방향을 포함한 이방성 확산을 적용할 경우 기존의 방법과 비교하여 약 2배의 속도 향상을 가져왔으며, Circle 이미지의 경우 약 $0.45{\sim}2.33(dB)$정도 성능 향상된 화질을 보였다. 또한 기존의 방법보다 과다 분할이 줄어들고 영상이 매우 효과적으로 분할됨을 확인하였다.

독점 멀티 분류기의 심층 학습 모델을 사용한 약지도 시맨틱 분할 (Weakly-supervised Semantic Segmentation using Exclusive Multi-Classifier Deep Learning Model)

  • 최현준;강동중
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.227-233
    • /
    • 2019
  • 최근 딥러닝 기술의 발달과 함께 신경 네트워크는 컴퓨터 비전에서도 성공을 거두고 있다. 컨볼루션 신경망은 단순한 영상 분류 작업뿐만 아니라 객체 분할 및 검출 등 난이도가 높은 작업에서도 탁월한 성능을 보였다. 그러나 그러한 많은 심층 학습 모델은 지도학습에 기초하고 있으며, 이는 이미지 라벨보다 주석 라벨이 더 많이 필요하다. 특히 semantic segmentation 모델은 훈련을 위해 픽셀 수준의 주석을 필요로 하는데, 이는 매우 중요하다. 이 논문은 이러한 문제를 해결하기 위한 네트워크 훈련을 위해 영상 수준 라벨만 필요한 약지도 semantic segmentation 방법을 제안한다. 기존의 약지도학습 방법은 대상의 특정 영역만 탐지하는 데 한계가 있다. 반면에, 본 논문에서는 우리의 모델이 사물의 더 다른 부분을 인식하도 multi-classifier 심층 학습 아키텍처를 사용한다. 제안된 방법은 VOC 2012 검증 데이터 세트를 사용하여 평가한다.

센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출 (Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring)

  • 백수정
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

의미론적 영상 분할의 정확도 향상을 위한 에지 정보 기반 후처리 방법 (Post-processing Algorithm Based on Edge Information to Improve the Accuracy of Semantic Image Segmentation)

  • 김정환;김선혁;김주희;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제21권3호
    • /
    • pp.23-32
    • /
    • 2021
  • 컴퓨터 비전 분야의 의미론적 영상 분할(Semantic Image Segmentation) 기술은 이미지를 픽셀 단위로 분할 하여 클래스를 나누는 기술이다. 이 기술도 기계 학습을 이용한 방법으로 성능이 빠르게 향상되는 중이며, 픽셀 단위의 정보를 활용할 수 있는 높은 활용성이 주목받는 기술이다. 그러나 이 기술은 초기부터 최근까지도 계속 '세밀하지 못한 분할'에 대한 문제가 제기되어 왔다. 이 문제는 레이블 맵의 크기를 계속 늘리면서 발생한 문제이기 때문에, 자세한 에지 정보가 있는 원본 영상의 에지 맵을 이용해 레이블 맵을 수정하여 개선할 수 있을 것으로 예상할 수 있었다. 따라서 본 논문은 기존 방법대로 학습 기반의 의미론적 영상 분할을 유지하되, 그 결과인 레이블 맵을 원본 영상의 에지 맵 기반으로 수정하는 후처리 알고리즘을 제안한다. 기존의 방법에 알고리즘의 적용 한 뒤 전후의 정확도를 비교했을 때 평균적으로 약 1.74% 픽셀 정확도와 1.35%의 IoU(Intersection of Union) 정확도가 향상되었으며, 결과를 분석했을 때 성공적으로 본래 목표한 세밀한 분할 기능을 개선했음을 보였다.

위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할 (Hair Classification and Region Segmentation by Location Distribution and Graph Cutting)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.1-8
    • /
    • 2022
  • 최근 소개된 구글 MediaPipe의 모발 분할 방식은 실시간 모바일 애플리케이션을 위해 특별히 설계된 단일 카메라 입력에서 신경망 기반 모발 분할을 위한 새로운 접근 방식을 제시한다. 상대적으로 작은 신경망으로 가상 머리카락 다시 칠하기와 같은 증강 현실 효과에 매우 적합한 고품질 머리카락 분할 마스크를 생성한다. 그렇지만, 모발 스타일 또는 모발 영역에 잡음이 있는 경우에 모발 분할 정확도가 떨어지는 문제점들이 있다. 이에 본 연구에서는 지정된 라벨에서 모발 위치와 모발 색상 가능성의 추정된 사전 분포에 따라 이미지의 에너지 함수를 구성하고, 이것을 그래프 절단 알고리즘에 따라 최적화시키는 방식으로 초기 모발 영역을 얻는 방식을 도입한다. 그런 다음에, 초기 모발 영역에 클러스터링 알고리즘과 사후 처리 기법을 적용하여 최종 모발 영역을 정밀하게 분할 할 수 있도록 한다. 제안된 방식은 MediaPipe의 모발 분할 파이프라인에 적용된다.

척추의 중심점과 Modified U-Net을 활용한 딥러닝 기반 척추 자동 분할 (Deep Learning-based Spine Segmentation Technique Using the Center Point of the Spine and Modified U-Net)

  • 임성주;김휘영
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.139-146
    • /
    • 2023
  • Osteoporosis is a disease in which the risk of bone fractures increases due to a decrease in bone density caused by aging. Osteoporosis is diagnosed by measuring bone density in the total hip, femoral neck, and lumbar spine. To accurately measure bone density in the lumbar spine, the vertebral region must be segmented from the lumbar X-ray image. Deep learning-based automatic spinal segmentation methods can provide fast and precise information about the vertebral region. In this study, we used 695 lumbar spine images as training and test datasets for a deep learning segmentation model. We proposed a lumbar automatic segmentation model, CM-Net, which combines the center point of the spine and the modified U-Net network. As a result, the average Dice Similarity Coefficient(DSC) was 0.974, precision was 0.916, recall was 0.906, accuracy was 0.998, and Area under the Precision-Recall Curve (AUPRC) was 0.912. This study demonstrates a high-performance automatic segmentation model for lumbar X-ray images, which overcomes noise such as spinal fractures and implants. Furthermore, we can perform accurate measurement of bone density on lumbar X-ray images using an automatic segmentation methodology for the spine, which can prevent the risk of compression fractures at an early stage and improve the accuracy and efficiency of osteoporosis diagnosis.

고해상도 위성영상을 이용한 농촌 도로 매핑을 위한 영상 분류 및 영상 분할 방법 비교에 관한 연구 (Comparative Research of Image Classification and Image Segmentation Methods for Mapping Rural Roads Using a High-resolution Satellite Image)

  • 정윤재;구본엽
    • 한국지리정보학회지
    • /
    • 제24권3호
    • /
    • pp.73-82
    • /
    • 2021
  • 농촌 도로는 농촌 지역의 개발과 관리를 위한 핵심 기반시설로서 원격탐사 자료를 활용한 농촌 도로 관리 기술은 농촌 교통 인프라 확대, 농촌 주민의 삶의 질 개선을 위해 매우 중요하다. 본 연구에서는 농촌 지역을 촬영한 고해상도 위성영상을 활용하여 농촌 도로를 매핑하기 위해 영상 분류 방법과 영상 분할 방법을 다음의 과정을 통하여 비교하였다. 영상 분류의 경우, 심층 신경망 기반 딥러닝 기법을 주어진 고해상도 위성영상에 적용하여 고정밀 객체 분류 지도를 제작하였고 이로부터 농촌 도로 객체를 추출함으로써 농촌 도로를 매핑하였다. 영상 분할의 경우, multiresolution segmentation 기법을 동일한 위성영상에 적용하여 세그먼트 영상을 제작하였고 농촌 도로에 위치한 다중 객체들을 선택하고 이들을 최종적으로 융합하여 농촌 도로를 매핑하였다. 영상 분류 및 영상 분할 방법을 통해 매핑한 농촌 도로의 정확도 검증을 위해 100개의 검사점을 사용하였고 다음과 같은 결론을 도출하였다. 영상 분류 방법에서는 객체 분류 지도 내 오분류 에러로 인해 영상 내 일부 농촌 도로의 인식이 불가능하였으나 영상 분할 방법에서는 영상 내 모든 농촌 도로의 인식이 가능하였으므로 영상 분할 방법이 영상 분류 방법보다 위성영상을 이용한 농촌 도로 매핑 작업에 더 적합한 방법이었다. 그러나 영상 분할 방법을 통해 매핑한 농촌 도로를 구성하는 일부 세그먼트들이 농촌 도로 외 객체를 포함하고 있어 영상 내 일부 농촌 도로에서 오분류 에러가 발생하였다. 추후 연구에서는 객체 기반 분류 또는 합성곱 신경망 등 다양한 정밀 객체 인식 기법을 고해상도 위성영상에 적용하여 농촌 도로의 정확도를 개선할 계획이다.

비트매트릭스 산술 부호 방식의 정지영상 압축 시스템 (A Still Image Compression System using Bitmatrix Arithmetic Coding)

  • 이제명;이호석
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.411-420
    • /
    • 2004
  • 본 논문은 David Taubman의 JPEG2000 시스템보다 기능면에서 우수한 비트매트릭스 부호 방식의 정지영상 압축 시스템을 제안한다. 시스템은 서브블록 단위로 비트매트릭스를 구성하여 산술부호화를 수행하여 40 : 1 이상의 높은 정지영상 압축율을 보여주고 있다. 비트매트릭스 서브블록은 비트평면에 나타나는 비트들을 2${\times}$2 비트매트릭스로 파악하여 서브블록을 구성한 것이다. 산술부호기는 구성된 서브블록을 비트매트릭스 단위로 부호하여 압축한다. 시스템의 입력 모드는 분할(Segmentation) 모드와 ROI(Region Of Interest) 모드로 구성된다. 분할 모드는 입력 영상을 문자 부분과 배경 영상 부분으로 분할하여 입력할 수 있게 한다. ROI 모드는 입력 영상을 관심 영역과 그 밖의 영역으로 구분하여 입력할 수 있게 한다. 현재 시스템이 나타내는 높은 압축율은 다른 JPEG2000 시스템들과 충분히 비교할 수 있는 수준이다. 시스템은 그 밖에 그레이코딩를 수행하여 압축율을 향상시킨다.

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.