• Title/Summary/Keyword: High school mathematics test

Search Result 176, Processing Time 0.023 seconds

An analysis on the secondary students' conceptualization level of the formula of quadratic equation based on Sfard's reification theory (Sfard의 구상화(Reification) 이론에 근거한 중·고등학생의 이차방정식 근의 공식 개념 형성 수준 분석)

  • Chang, Hyun Suk;Lee, Bongju
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.231-246
    • /
    • 2018
  • In this paper, we applied Sfard's reification theory to analyze the secondary students' level of conceptualization with regard to the formula of quadratic equation. Through the generation and development of mathematical concepts from a historical perspective, Sfard classified the formulation process into three stages of interiorization, condensation, and reification, and proposed levels of formulation. Based on this theory, we constructed a test tool reflecting the reversibility of the nature of manipulation of Piaget's theory as a criterion of content judgement in order to grasp students' conceptualization level of the formula of quadratic equation. By applying this tool, we analyzed the conceptualization level of the formula of quadratic equation of the $9^{th}$ and $10^{th}$ graders. The main results are as follows. First, approximately 45% of $9^{th}$ graders can not memorize the formula of quadratic equation, or even if they memorize, they do not have the ability of accurate calculation to apply for it. Second, high school curriculum requires for students to use the formula of the quadratic equation, but about 60% of $10^{th}$ graders have not reached at the level of reification that they can use the formula of quadratic equation. Third, as a result of imaginarily correcting the error of the previous concept, there was a change in the levels of $9^{th}$ graders, and there was no change in $10^{th}$ graders.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

Neuropsychological Approaches to Mathematical Learning Disabilities and Research on the Development of Diagnostic Test (신경심리학적 이론에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구)

  • Kim, Yon-Mi
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2011
  • Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

Effects of the Mathematical Modeling Learning on the Word Problem Solving (수학적 모델링 학습이 문장제 해결에 미치는 효과)

  • Shin, Hyun-Yong;Jeong, In-Su
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.107-134
    • /
    • 2012
  • The purpose of this study is to investigate the effectiveness of two teaching methods of word problems, one based on mathematical modeling learning(ML) and the other on traditional learning(TL). Additionally, the influence of mathematical modeling learning in word problem solving behavior, application ability of real world experiences in word problem solving and the beliefs of word problem solving will be examined. The results of this study were as follows: First, as to word problem solving behavior, there was a significant difference between the two groups. This mean that the ML was effective for word problem solving behavior. Second, all of the students in the ML group and the TL group had a strong tendency to exclude real world knowledge and sense-making when solving word problems during the pre-test. but A significant difference appeared between the two groups during post-test. classroom culture improvement efforts. Third, mathematical modeling learning(ML) was effective for improvement of traditional beliefs about word problems. Fourth, mathematical modeling learning(ML) exerted more influence on mathematically strong and average students and a positive effect to mathematically weak students. High and average-level students tended to benefit from mathematical modeling learning(ML) more than their low-level peers. This difference was caused by less involvement from low-level students in group assignments and whole-class discussions. While using the mathematical modeling learning method, elementary students were able to build various models about problem situations, justify, and elaborate models by discussions and comparisons from each other. This proves that elementary students could participate in mathematical modeling activities via word problems, it results form the use of more authentic tasks, small group activities and whole-class discussions, exclusion of teacher's direct intervention, and classroom culture improvement efforts. The conclusions drawn from the results obtained in this study are as follows: First, mathematical modeling learning(ML) can become an effective method, guiding word problem solving behavior from the direct translation approach(DTA) based on numbers and key words without understanding about problem situations to the meaningful based approach(MBA) building rich models for problem situations. Second, mathematical modeling learning(ML) will contribute attitudes considering real world situations in solving word problems. Mathematical modeling activities for word problems can help elementary students to understand relations between word problems and the real world. It will be also help them to develop the ability to look at the real world mathematically. Third, mathematical modeling learning(ML) will contribute to the development of positive beliefs for mathematics and word problem solving. Word problem teaching focused on just mathematical operations can't develop proper beliefs for mathematics and word problem solving. Mathematical modeling learning(ML) for word problems provide elementary students the opportunity to understand the real world mathematically, and it increases students' modeling abilities. Futhermore, it is a very useful method of reforming the current problems of word problem teaching and learning. Therefore, word problems in school mathematics should be replaced by more authentic ones and modeling activities should be introduced early in elementary school eduction, which would help change the perceptions about word problem teaching.

Effects of Mathematical Instructions Based on Constructivism on Learners' Reasoning A bility (구성주의 수학 수업이 추론 능력에 미치는 영향 - 초등학교 3학년 나눗셈을 중심으로 -)

  • Cho, Soo-Yun;Kim, Jin-Ho
    • Education of Primary School Mathematics
    • /
    • v.14 no.2
    • /
    • pp.165-185
    • /
    • 2011
  • The purpose of this study is to confirm the effects of the learner-centered instruction based on constructivism on learners' reasoning ability and their achievements which is closely related to reflective abstracting ability. To do it, learner-centered instructions for division was implemented, recall test, generation test, content reasoning test I and II were carried out. The following conclusions were drawn from the data we got. Experimental group(EG) improved their reasoning ability, while comparison group(CG) did not. EG showed statistically significant difference in the achievements of the contents learned in comparing with CG, and the difference in the achievements of the contents unlearned in the treatment in comparing with CG was higher than the one. In addition, the comparisons of the subgroups(high, middle, and low) between EG and CG showed that the treatment had a positive influence on the achievement to all subgroups in EG. That is, the treatment was effective for unable learners. Finally, EG showed statistically significant difference in the sub-domain of simple calculation which might be considered as the benefits of the treatment of the CG as well as in the sub-domain of concept and principle.

Relationship between Smart Phone Usage and Self-efficacy & Academic Achievement in High-grade Elementary School Students (초등학교 고학년생의 스마트폰 사용과 자기효능감 및 학업성취도와의 관계)

  • Kim, Yeo Ran;Kim, HyeonSuk
    • Journal of the Korean Society of School Health
    • /
    • v.28 no.3
    • /
    • pp.200-210
    • /
    • 2015
  • Purpose: This study aimed to examine the use of smart phones and their relationship with self-efficacy and academic achievement among students in 5th to 6th grade. Methods: 954 students in $5^{th}$ to $6^{th}$ grade were selected from three elementary schools in K City through purposive sampling. Data of 591 respondents were analyzed by $x^2$ test, ANOVA, correlation analysis and multiple regression analysis using the SPSS/WIN program. Results: First, 64% of the students possessed a smart phone and female students used their phone more than male students. 47.5% of the students said they first used a smartphone in their $5^{th}$ grade and 11.7% said in their 6th grade. Second, heavier use of smart phones was related to a lower level of self-efficacy (p<.001). Third, the more the students used a smart phone, the less they achieved in academic performance (Korean language: p<.001, mathematics: p<.01). Finally, the biggest factor influencing smart phone addiction was longer use of smart phones. In addition, lower self-efficacy and lower ability to adapt to difficult tasks were the factors influencing the increase in smart phone addiction. Less use of smart phones and higher self-efficacy resulted in higher achievement in academic performance. Conclusion: It is essential to decrease students' use of smart phones and improve their self-efficacy and academic performance. Intervention programs to reduce the use of smart phones should include a profound interest, a personality-oriented educational environment and sufficient dialogues with students at home, schools and the local society, beyond simple regulations to prevent adverse effects.

A Study on the Curriculum of University Calculus Reflecting the 2015 Revised Curriculum (2015 개정 교육과정을 반영한 대학 미적분학 교과에 대한 탐색)

  • Kim, Yun Ah;Kim, Kyung Mi
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.349-366
    • /
    • 2017
  • The 2015 revised curriculum is an integrated curriculum that reflects national and societal needs to foster creative convergent talent in the school curriculum. Along with these changes, the Ministry of Education introduced a system to change the major from 2017 to the fourth year of university. Therefore, each university should prepare to reflect the curriculum and institutional change before welcoming students who have completed the 2015 revised curriculum. The university needs to study the countermeasures for implementing the 2015 revised curriculum and expanding the period of major change when preparing the curriculum and contents of the calculus courses that freshmen take. Handong University has been studying the operation methods of new students who want to decide their major at the first grade, such as operating calculus courses at various levels and allocating appropriate proportions of calculus for preliminary examinations. This case is similar to the basic purpose of the revised curriculum in 2015, so it can suggest implications for the operation of the university calculus class after the curriculum revision. In this paper, we have analyzed the results of the recent freshman mathematics test for the recent 5 years and the students' calculus grades and compared them with the contents of the calculus curriculum operated by Handong University and the 2015 revised higher mathematics curriculum. As a result, we proposed five classes of calculus suitable for college major and it was found that the calculus curriculum should include the missing quadratic method in the 2015 revised curriculum.

Estimation of Hazard Function and its Associated Factors in Gastric Cancer Patients using Wavelet and Kernel Smoothing Methods

  • Ahmadi, Azadeh;Roudbari, Masoud;Gohari, Mahmood Reza;Hosseini, Bistoon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5643-5646
    • /
    • 2012
  • Background and Objectives: Increase of mortality rates of gastric cancer in Iran and the world in recent years reveal necessity of studies on this disease. Here, hazard function for gastric cancer patients was estimated using Wavelet and Kernel methods and some related factors were assessed. Materials and Methods: Ninety-five gastric cancer patients in Fayazbakhsh Hospital between 1996 and 2003 were studied. The effects of age of patients, gender, stage of disease and treatment method on patient's lifetime were assessed. For data analyses, survival analyses using Wavelet method and Log-rank test in R software were used. Results: Nearly 25.3% of patients were female. Fourteen percent had surgery treatment and the rest had treatment without surgery. Three fourths died and the rest were censored. Almost 9.5% of patients were in early stages of the disease, 53.7% in locally advance stage and 36.8% in metastatic stage. Hazard function estimation with the wavelet method showed significant difference for stages of disease (P<0.001) and did not reveal any significant difference for age, gender and treatment method. Conclusion: Only stage of disease had effects on hazard and most patients were diagnosed in late stages of disease, which is possibly one of the most reasons for high hazard rate and low survival. Therefore, it seems to be necessary a public education about symptoms of disease by media and regular tests and screening for early diagnosis.

Mathematical Creativity in the View of General Creativity Theory (창의성 이론을 통해 본 수학 창의성)

  • Kim, Pan-Soo
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.3
    • /
    • pp.465-496
    • /
    • 2008
  • With leadership and speciality, creativity is cutting a fine figure among major values of human resource in 21C knowledge-based society. In the 7th school curriculum much emphasis is put on the importance of creativity by pursuing the image of human being based on creativity based on basic capabilities'. Also creativity is one of major factors of giftedness, and developing one's creativity is the core of the program for gifted education. Doing mathematics requires high order thinking and knowledgeable understandings. Thus mathematical creativity is used as a measure to test one's flexibility, and therefore it is the basic tool for creativity study. But theoretical study for mathematical creativity is not common. In this paper, we discuss mathematical creativity applied to 6 approaches suggested by Sternberg and Lubart in educational theory. That is, mystical approaches, pragmatical approaches, psycho-dynamic approaches, cognitive approaches, psychometric approaches and scio-personal approaches. This study expects to give useful tips for understanding mathematical creativity and understanding recent research results by reviewing various aspects of mathematical creativity.