• Title/Summary/Keyword: High salinity

Search Result 1,126, Processing Time 0.024 seconds

Assessment of Electrical Conductivity of Saturated Soil Paste from 1:5 Soil-Water Extracts for Reclaimed Tideland Soils in South-Western Coastal Area of Korea

  • Park, Hyun-Jin;Yang, Hye In;Park, Se-In;Seo, Bo-Seong;Lee, Dong-Hwan;Kim, Han-Yong;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • BACKGROUND: Measurement of electrical conductivity of saturated soil paste ($EC_e$) for assessment of soil salinity is time-consuming, and thus conversion of EC of 1:5 soil-water extract ($EC_{1:5}$) to $EC_e$ using a dilution factor may be of help to monitor salinity of huge number of soil samples. This study was conducted to evaluate the dilution factor for reclaimed tideland (RTL) soils of South Korea. METHODS AND RESULTS: Soil samples (n=40) were collected from four RTLs, and analyzed for $EC_{1:5}$, $EC_e$, and cation compositions of 1:5 soil-water extract. The dilution factor (8.70) was estimated by regression analysis between $EC_{1:5}$ and $EC_e$, and the obtained dilution factor was validated by applying to an independent data set (n=96) of $EC_{1:5}$ and $EC_e$. The $EC_e$ measured and predicted was strongly correlated ($r^2=0.74$, P<0.001), but $EC_e$ was overestimated by 16% particularly for the soils with high clay content and low sodium adsorption ratio (SAR). CONCLUSION: This study suggests that using the dilution factor to convert $EC_{1:5}$ to $EC_e$ is feasible method to monitor changes in the soil salinity of the study RTL. However, overestimation of $EC_e$ should be cautioned for the soils with high clay content and low SAR.

Spatial distribution of halophytes and environment factors in salt marshes along the eastern Yellow Sea

  • Chung, Jaesang;Kim, Jae Hyun;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.264-276
    • /
    • 2021
  • Background: Salt marshes provide a variety of ecosystem services; however, they are vulnerable to human activity, water level fluctuations, and climate change. Analyses of the relationships between plant communities and environmental conditions in salt marshes are expected to provide useful information for the prediction of changes during climate change. In this study, relationships between the current vegetation structure and environmental factors were evaluated in the tidal flat at the southern tip of Ganghwa, Korea, where salt marshes are well-developed. Results: The vegetation structure in Ganghwa salt marshes was divided into three groups by cluster analysis: group A, dominated by Phragmites communis; group B, dominated by Suaeda japonica; and group C, dominated by other taxa. As determined by PERMANOVA, the groups showed significant differences with respect to altitude, soil moisture, soil organic matter, salinity, sand, clay, and silt ratios. A canonical correspondence analysis based on the percent cover of each species in the quadrats showed that the proportion of sand increased as the altitude increased and S. japonica appeared in soil with a relatively high silt proportion, while P. communis was distributed in soil with low salinity. Conclusions: The distributions of three halophyte groups differed depending on the altitude, soil moisture, salinity, and soil organic matter, sand, silt, and clay contents. Pioneer species, such as S. japonica, appeared in soil with a relatively high silt content. The P. communis community survived under a wider range of soil textures than previously reported in the literature; the species was distributed in soils with relatively low salinity, with a range expansion toward the sea in areas with freshwater influx. The observed spatial distribution patterns may provide a basis for conservation under declining salt marshes.

Corrosion Rate of Structural Pipes for Greenhouse (온실 구조용 파이프의 부식속도 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2015
  • Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.

Control of Stretching of Tomato (Lycopersicon esculentum Mill.) on Cylindrical Paper Pot Seedling Using High-Salinity Potassium Fertilizers (고농도 칼륨처리를 활용한 원통형 종이포트 토마토묘의 도장억제)

  • Xu, Chan;Kim, Si Hong;Kim, Dae Hoon;Kim, Jae Kyung;Heo, Jae Yun;Vu, Ngoc Thang;Choi, Ki Young;Kim, Il Seop;Jang, Dong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.354-364
    • /
    • 2020
  • This study was conducted to examine the potential of inducing salinity stress on cylindrical paper pot tomato seedlings to inhibit overgrowth. Potassium fertilizers, sulfate of potash (K2SO4), muriate of potash (KCl), and monopotassium phosphate (KH2PO4), were prepared as two solutions of (5 and 10) dS·m-1 salinity level, respectively, to investigate the influence on tomato (Lycopersicon esculentum Mill.) seedling growth. We also investigated the adaptability and survivability of treated tomato seedlings with high-salinity potassium (10 dS·m-1 KCl) to harsh environmental conditions (water deficit, low temperature, and storage conditions). Repeated addition of high-salinity level KCl, K2SO4, or KH2PO4 markedly decreased the dry matter of shoot and root, leaf area, and net assimilate rates (NAR) but increased the stem diameter of seedlings. Among the three sources, the relative growth rate of plant height (RGRH) was most sensitive to KCl addition; increasing salinity levels of KCl solution decreased the RGRH of seedlings. The compactness, which directly reflects the stocky growth index, increased in KCl or KH2PO4 treatments. After a week's water deficit, severely wilted seedlings were observed in control seedlings (untreated with KCl), but no wilted seedlings were observed in the KCl treated seedlings, and the relative water content (RWC) of the untreated seedlings significantly decreased by 23 %, while that of the pretreated seedlings only decreased by 8 %. The increase in ion leakage of KCl treated seedlings at low temperatures was less than that of untreated seedlings. Furthermore, there was far lower damage proportion on pretreated seedlings at (9, 12, and 15)℃ storage temperatures after 20 days, compared with on unpretreated seedlings. Our results suggest that high-salinity potassium fertilizer, especially KCl, is effective in preventing tomato seedling overgrowth, while it also improves tolerance.

Impact of Seawater Inflow on the Temperature and Salinity in Shihwa Lake, Korea (배수갑문 운용에 따른 시화호의 수온과 염분 변화)

  • Choi, Jung-Hoon;Kim, Kye-Young;Hong, Dae-Byuk
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.541-552
    • /
    • 2000
  • The variations of physical properties due to inflow of seawater by sluice gates operation were observed in Shihwa Lake. The distributions of salinity and temperature were investigated at 11 stations during February, 1997 to July, 1998. The salinity of water mass in Shihwa Lake before gate operation was ranged below 15psu and strong stratification due to inflow of seawater was observed at the depth of 11 m. In July 1997, temperature difference of 10^{\circ}C$ was occurred between the surface and bottom water due to strong solar radiation. During October 1997 to February 1998, inversion of temperature distribution, which the temperature of bottom water was higher than that of surface water, was observed. In July 1997, temperature, salinity, current speed and current direction were investigated by RCM-7 at St.3 for 56 days. When sea water was intruded in Shihwa Lake, the symmetric distribution of temperature and salinity was observed and it seems to be resulted from inflow of seawater with low temperature and high salinity. After January 1998, salinity of Shihwa Lake was increased over 30psu due to continuous gate operation and the stratification was weakened.

  • PDF

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Effect of Spatial Soil Salinity Variation on the Emergence of Soiling and Forage Crops Seeded at the Newly Reclaimed Tidal Lands in Korea (신간척지토양의 공간적 염농도 변이가 녹비·사료작물의 출현에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.172-178
    • /
    • 2009
  • Relation between spatial variation of soil salinity and emergence of five upland crops such as sudan grass, sesbania, barnyard grass, corn and soybean was studied in the three reclaimed lands of Korea during two years from 2007 to 2008. Although soil salinity is vary high at seeding season, desalting treatment by three days-flooding before seeding, reach at favorable level lower than $6dS\;m^{-1}$ of soil salinity for emergence of soiling and forage crops and then plant number emerged(No. $m^{-2}$) was 55~149 for sudan grass, 118~266 for barnyard grass, 46~115 for sesbania, 3~11 for corn and 6~19 for soybean in 2007. However plant number emerged under no desalting treatment varies place by place because of soil salinity difference in 2008. Plant number emerged after seeding according to soil salinity was well expressed as logarithmic function, and sharply decrease with increase of soil salinity. It is accordingly concluded that desalting treatment of flooding before seeding of upland crops is essential for good emergence in the newly reclaimed land from tidal flat.

Tolerance Capacity to Salinity Changes in Adult and Larva of Oryzias dancena, a Euryhaline Medaka (광염성 송사리 Oryzias dancena 성체 및 자어의 염분도 변화에 대한 내성)

  • Cho, Young-Sun;Lee, Sang-Yoon;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Osmoregulatory capabilities of a euryhaline medaka, Oryzias dancena (Beloniformes; Teleostei), was examined with a particular emphasis on adult and larval viability during direct salinity changes. O. dancena adults were highly capable for hyper-osmoregulation as well as hypo-osmoregulation, as evidenced by no adverse effect on their viability during the direct transfer either from complete freshwater ($0^{\circ}/_{\circ\circ}$) to $40^{\circ}/_{\circ\circ}$ salinity, or from $70^{\circ}/_{\circ\circ}$ to $0^{\circ}/_{\circ\circ}$. Furthermore, the phased increase of external salinity with acclimation periods allowed them to survive at a salinity as high as $75^{\circ}/_{\circ\circ}$. However, tolerant capability to acute salinity increase in early larval stage was much less than in adult stage, based on the finding that the tolerance range of salinity increase was only $15^{\circ}/_{\circ\circ}$ from freshwater, indicating that the hyper-osmoregulation system might not be fully developed in the early larval stage. On the contrary, the hypoosmoregulation system could be more solidified in O. dancena larvae, as evidenced by their good survival even after direct transfer from $45^{\circ}/_{\circ\circ}$ to $0^{\circ}/_{\circ\circ}$. Knowledge achieved in this study could form the basis for a wide scope of researches including ecotoxicogenomics and geneexpression assay using this model species.

Effect of Difference in Soil Salinity, Compost and Additional Fertilizer on the Grain Yield and Yield Components of Wheat in the Newly Reclaimed Tidal Lands in Korea (신간척지토양에서 토양염농도, 퇴비 및 추비량 차이가 밀의 수량 및 수량구성요소에 미치는 영향)

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.752-761
    • /
    • 2011
  • Recently, upland crops cultivation instead of paddy crops are more popular and highlighted by increase of social demand in agricultural land use. Especially, wheat cultivation for replacing of import food grain are more interested by government, and it is urgently needed that possibility of wheat cultivation is evaluated in the reclaimed tidal land. Crop cultivation is closely related with soil salinity and cultivation method in the reclaimed tidal land. In order to evaluate possibility of wheat cultivation, effect of different application level of compost and nitrogen additional fertilizer, also soil salinity on the grain yield and yield components of three wheat cultivars was studied at the newly reclaimed Saemangeum and Hwanong tidal lands in Korea. $270-300kg\;10a^{-1}$ of grain yield were obtained at the experimental site in the Saemangeum reclaimed tidal land where soil salinity was less than $4dS\;m^{-1}$ during growing periods from December, 2009 to June, 2010. However, almost no grain yield was obtained at the experimental site in the Hwaong reclaimed tidal land, where soil salinity was more than average $8dS\;m^{-1}$ ranged from 2.0 to $25.9dS\;m^{-1}$ during growing period and then salt demage was severe. Yield was significantly different among application level of compost and nitrogen additional fertilizer in the newly reclaimed Saemangeum tidal land. However, it is considered that three cultivars such as Chopum, Chogyung and Geumgang, have similar sensibility to soil salinity and fertilizer level, because there is statistically no difference among ciltivars in Hwaong and Saemangeum, and also among cultivars in the different levels of compost and fertilizer. Finally, it is concluded that wheat can be possibly produced by reasonable fertilizer application in the Saemangeum reclaimed tidal land, but wheat cultivation is impossible because of high soil salinity in the Hwaong reclaimed tidal land.

Growth of Rice Plant and Salinity under Different Flooding Times and Days to Transplanting after Submerged Rotary in Saline Paddy (우척답에서 정지후 환수회수와 이앙시기에 따른 염분농도와 수도생육)

  • 정진일;유숙종
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.398-404
    • /
    • 1993
  • This study was conducted in order to obtain the information for yield improvement in saline paddy. Saline concentration, growth and yield of rice, being subjected to different flooding times and days to transplanting were investigated in saline paddy with 0.35 % and 0.5 % salt concentration. Saline concentration of soil was increased to 0.41 % just after rotary in the paddy with 0.35 % salinity, but decreased to 0.20 % after 3 to 4 times of flooding treatment. And also that of surface water was decreased from 0.2 % to 0.11 %. Saline concentration of soil in 5cm depth was decreased to 0.31 % by one time flooding and to 0.22% by 3~4 times flooding but salinity below 7cm depth showed slight decrease. Seedling death was exceeded 37 % when transplanted one day after rotary in the paddy with 0.35% salinity. Death ratio was decreased to 20% by three times flooding and transplanting six days after rotary. In paddy with 0.5 % salinity, death ratio was high but the tendency was very similar to 0.35 % field. In 0.35 % saline paddy field, yields were increased by 14 % by three times flooding and transplanting six days after rotary as compared to one time flooding and transplanting are day after rotary. Therefore, 3 to 4 times flooding and transplanting 5 to 6 days after rotary are desirable in high saline paddy.

  • PDF