• Title/Summary/Keyword: High resolution terrain height data

Search Result 26, Processing Time 0.026 seconds

Numerical Simulation of Effect on Atmospheric Flow Field Using High Resolution Terrain Height Data in Complex Coastal Regions (복잡한 해안지역에서 상세한 지헝고도 자료이용에 따른 대기 유동장의 영향에 관한 수치모의)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Lee Kang-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.179-189
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out. Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three -dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data in numerical simulation. So the experiments were designed according to the detail terrain height with 3second resolution or not. Case 30s was the experiment using the terrain height data of USGS and Case 3s was the other using the detail terrain height data of Ministry of Environment. The results of experimental were more remarkable. In Case 3s, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height.

Numerical Simulation of Dispersion Fields of SO2 according to Atmospheric Flow Field to Reflect local characteristics in Complex Coastal Regions (복잡한 해안지역의 지역특성을 고려한 대기 유동장에 따른 SO2)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Lee Kang-Yeol;Kim Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.297-309
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three­dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data and FDDA with observational data to reflect local characteristics in numerical simulation. So the experiments were designed according to FDDA and the detail terrain height with 3sec resolution or not Case 30s was the experiment using the terrain height data of USGS without FDDA and Case 3s was the experiment using the detail terrain height data of Ministry of Environment without FDDA and Case 3sF was experiment using the detail terrain height data of Ministry of Environment with FDDA. The results of experiments were more remarkable, In Case 3s and Case 3sF, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height Also Case 3sF had more adequate tendency than Case 3s at dawn.

Analysis of Numerical Meteorological Fields due to the Detailed Surface Data in Complex Coastal Area (복잡 연안지역의 지표면 자료 상세화에 따른 수치 기상장 분석)

  • Lee, Hwa-Woon;Jeon, Won-Bae;Lee, Soon-Hwan;Choi, Hyun-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.649-661
    • /
    • 2008
  • The impact of the detailed surface data on regional meteorological fields in complex coastal area is studied using RAMS. Resolutions of topography and land use data are very important to numerical modeling, because high resolution data can reflect correct terrain height and detail characteristics of the surface. Especially, in complex coastal region such as Gwangyang area, southern area in Korean Peninsula, high resolution topography and land use data are indispensable for accurate modeling results. This study investigated the effect of resolutions of terrain data using SRTM with 3 second resolution topography and KLU with 1 second resolution land use data. Case HR was the experiment using high resolution data, whereas Case LR used low resolution data. In Case HR, computed surface temperature was higher than Case LR along the coastline and wind speed was $1{\sim}2m/s$ weaker than Case LR. Time series of temperature and wind speed indicated great agreement with the observation data. Moreover, Case HR indicated outstanding results on statistical analysis such as regression, root mean square error, index of agreement.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

Accuracy Analysis of DEMs Generated from High Resolution Optical and SAR Images (고해상도 광학영상과 SAR영상으로부터 생성된 수치표고모델의 정확도 분석)

  • Kim, Chung;Lee, Dong-Cheon;Yom, Jae-Hong;Lee, Young-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.337-343
    • /
    • 2004
  • Spatial information could be obtained from spaceborne high resolution optical and synthetic aperture radar(SAR) images. However, some satellite images do not provide physical sensor information instead, rational polynomial coefficients(RPC) are available. The objectives of this study are: (1) 3-dimensional ground coordinates were computed by applying rational function model(RFM) with the RPC for the stereo pair of Ikonos images and their accuracy was evaluated. (2) Interferometric SAR(InSAR) was applied to JERS-1 images to generate DEM and its accuracy was analysis. (3) Quality of the DEM generated automatically also analyzed for different types of terrain in the study site. The overall accuracy was evaluated by comparing with GPS surveying data. The height offset in the RPC was corrected by estimating bias. In consequence, the accuracy was improved. Accuracy of the DEMs generated from InSAR with different selection of GCP was analyzed. In case of the Ikonos images, the results show that the overall RMSE was 0.23327", 0.l1625" and 13.70m in latitude, longitude and height, respectively. The height accuracy was improved after correcting the height offset in the RPC. i.e., RMSE of the height was 1.02m. As for the SAR image, RMSE of the height was 10.50m with optimal selection of GCP. For the different terrain types, the RMSE of the height for urban, forest and flat area was 23.65m, 8.54m, 0.99m, respectively for Ikonos image while the corresponding RMSE was 13.82m, 18.34m, 10.88m, respectively lot SAR image.

  • PDF

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

Atmospheric Numerical Simulation for an Assessment of Wind Resource and an Establishment of Wind Map on Land (풍력자원 평가 및 육상바람지도 작성을 위한 고해상도 대기유동장 수치모의)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Kim, Hyun-Goo;Choi, Hyun-Jung;Lee, Soon-Hwan;Kim, Dong-Hyuk;Kim, Min-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.529-531
    • /
    • 2009
  • To construct the wind map for mainland Korea, the well designed atmospheric numerical modeling system was used. Three nest domains were construced with spatial resolutions between $10{\times}10km$ up to the hightest resolution of $1{\times}1km$. Parameterization schemes like MRF(PBL), RRTM(radiation), Grell(cumulus) were chosen since wind data simulated is in better agreement with the observed wind data. High-resolution atmospheric numerical model was applied to simulate the motion of the atmosphere and to produce the wind map around the South Korea. The results of several simulations were improved compare to the past system, because of using the fine geographical data, such as terrain height and land-use data, and the meteorological data assimilation.

  • PDF

A Study on Effect of Improvement Plan for Wind Energy Forecasting (풍력 발전 예보 정확도 향상을 위한 국지 기상장 수치모의 개선 방안 연구)

  • Jung, Ji-A;Lee, Hwa-Woon;Jeon, Won-Bae;Kim, Dong-Hyeok;Kim, Hyun-Goo;Kang, Young-Heack
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • This study investigates the impact of enhanced regional meteorological fields on improvement of wind energy forecasting accuracy in the southwestern coast of the Korean Peninsula. To clarify the effect of detailed surface boundary data and application of analysis nudging technique on simulated meteorological fields, several WRF simulations were carried out. Case_LT, which is a simulation with high resolution terrain height and land use data, shows the most remarkable accuracy improvement along the shoreline mainly due to modified surface characteristics such as albedo, roughness length and thermal inertia. Case_RS with high resolution SST data shows accurate SST distributions compared to observation data, and they led to change in land and sea breeze circulation. Case_GN, grid nudging applied simulation, also shows changed temperature and wind fields. Especially, the application of grid nudging dominantly influences on the change of horizontal wind components in comparison with vertical wind component.

Automatic Building Reconstruction with Satellite Images and Digital Maps

  • Lee, Dong-Cheon;Yom, Jae-Hong;Shin, Sung-Woong;Oh, Jae-Hong;Park, Ki-Surk
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.537-546
    • /
    • 2011
  • This paper introduces an automated method for building height recovery through the integration of high-resolution satellite images and digital vector maps. A cross-correlation matching method along the vertical line locus on the Ikonos images was deployed to recover building heights. The rational function models composed of rational polynomial coefficients were utilized to create a stereopair of the epipolar resampled Ikonos images. Building footprints from the digital maps were used for locating the vertical guideline along the building edges. The digital terrain model (DTM) was generated from the contour layer in the digital maps. The terrain height derived from the DTM at each foot of the buildings was used as the starting location for image matching. At a preset incremental value of height along the vertical guidelines derived from vertical line loci, an evaluation process that is based on the cross-correlation matching of the images was carried out to test if the top of the building has reached where maximum correlation occurs. The accuracy of the reconstructed buildings was evaluated by the comparison with manually digitized 3D building data derived from aerial photographs.

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT 위성영상을 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Whan;Lee, Yong-Woong;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.79-89
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen, The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF