• Title/Summary/Keyword: High resolution MRI

Search Result 128, Processing Time 0.024 seconds

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

Development of Solenoid RF Coil for Animal Imaging in 3T High Magnetic Field MRI (고자장 3T MRI 장비에서 동물영상을 위한 솔레노이드 RF코일 개발)

  • Lee, Hong-Seok;Woo, Dong-Cheol;Min, Kwang-Hong;Kim, Yong-Kwon;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • Purpose : The purpose of the present study was to develop and optimize solenoid coil for animal- model in 3 T MRI system and investigate and compare with the birdcage coil concerning the image quality with the various parameters such as SNR and Q-factor. Materials and Methods : Solenoid coil for animal-model was made on the acryl structure (diameter 4 cm, length 10 cm) 3 times-winding cooper tape of width 2 cm, thickness 0.05 cm and length 10 cm with 2 cm interval between winded tapes. Capacitors from 2 pF to 100 pF were used, and the solenoid coil was designed for receiver only coil. Results : SNR of the developed solenoid was 985 in CuSO4 0.7 g/L and 995 in rat experiment. Q-factor was 84-89 in unloaded condition and 203-206 in loaded condition. Conclusion : The resolution of the image obtained from solenoid was relatively higher than that of the conventional birdcage coil. In addition, the homogeneity of RF field by coil simulation was significantly excellent. The present study demonstrated that the solenoid coil could be useful to obtain small animal images with better contrast, resolution, visibility than images from birdcage.

  • PDF

A study on the reproducibility of hippocampal volumes measured using magnetic resonance images of different magnetic field strengths and slice orientations (자장 세기와 스캔 방향이 다른 자기공명영상에서 측정된 해마 체적의 재현성 연구)

  • Choi, Yu Yong;Lee, Dong Hee;Lee, Sang Woong;Lee, Kun Ho;Kwon, Goo Rak
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.44-48
    • /
    • 2016
  • In a longitudinal neuroimaging study, the upgrades of a magnetic resonance imaging (MRI) scanner due to outdated hardwares and softwares make it difficult to maintain the same MRI conditions in the long-term research period. Particularly, high field MRI systems such 3T scanners become popular in recent years. However, it is still unclear whether an integrated analysis of 3T and 1.5T images is possible without consideration of the field strength. In this study, we evaluated the reproducibility of hippocampal volumes between brain images with different field strengths and slice orientations. 296 participants underwent both 3T and 1.5T MRI and both sagittal and axial scans for high resolution brain images, and their hippocampal volumes were measured using Freesurfer, a well-known software for neuroimaging analysis. Paired t-tests showed that the hippocampal volumes were significantly different between the image types. These results suggest that it is necessary to develop data analysis techniques for integrating diverse types of MRI images.

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Software Implementation for 3D visualization of brain fiber tractography and high-resolution anatomical data

  • Oh, Jung-Su;Song, In-Chan;Ikhwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.32-32
    • /
    • 2003
  • The purpose of paper is to implement a PC-based software for 3D visualization of brain fiber tractography and high-resolution anatomical data 서론: DTI (Diffusion tensor imaging) is a very useful noninvasive MRI technique for providing the direction and connectivity information of brain fiber tracts. Especially in patients with glioma, fiber tracts on the lesion side in the brain had varying degrees of displacement or disruption as a result of the tumor. Tract disruption resulted from direct tumor involvement, compression on the tract, and vasogenic edema surrounding the tumor. To combine information on fiber tracts surrounding turner with a high-resolution anatomical 3D image may be clinically useful for surgical planning. Therefore we implemented a software for visualizing both brain fiber tractography and anatomical data.

  • PDF

Software Implementation for 3D visualization of brain fiber tractography and high-resolution anatomical data

  • Oh, Jung-Su;Song, In-Chan;Ikhwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.83-83
    • /
    • 2003
  • Purpose: The purpose of paper is to implement a PC-based software for 3D visualization of brain fiber tractography and high-resolution anatomical data introduction: DTI (Diffusion tensor imaging) is a very useful noninvasive MRI technique for providing the direction and connectivity information of brain fiber tracts. Especially in patients with glioma, fiber tracts on the lesion side in the brain had varying degrees of displacement or disruption as a result of the tumor. Tract disruption resulted from direct tumor involvement, compression on the tract, and vasogenic edema surrounding the tumor. To combine information on fiber tracts surrounding tumor with a high-resolution anatomical 3D image may be clinically useful for surgical planning. Therefore we implemented a software for visualizing both brain fiber tractography and anatomical data.

  • PDF

Diagnostic Usefulness of High Resolution Cross Sectional MRI in Symptomatic Middle Cerabral Arterial Dissection

  • Lee, Hai-Ong;Kwak, Hyo-Sung;Chung, Gyung-Ho;Hwang, Seung-Bae
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.6
    • /
    • pp.370-372
    • /
    • 2011
  • Dissection of the middle cerebral artery (MCA) is less frequent compared with dissection of the vertebrobasilar system or carotid artery. Recently, high-resolution cross sectional MR imaging (HRMRI) has emerged as a potential technique for atherosclerotic plaque imaging in MCA, We introduce the findings of HRMRI in a 56-year-old woman with traumatic MCA dissection, HRMRI showed an intimal flap and tapered pseudolumen with intra-luminal hemorrhage, We performed stent deployment about MCA dissection after failed medical treatment Three months later, there was no in-stent restenosis and no further neurological deficit were noted.

High-Resolution MRI Study on Mouse Brain Using Micro-Imaging (초고해상도 미세영상 기법을 이용한 Mouse 뇌의 자기공명영상 연구)

  • Han, Doug-Young;Yoon, Moon-Hyun;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Purpose : By using the micro-imaging unit modified from NMR spectrometer, the high resolution MRI protocols of finer than 100 micron in 5 minutes, is sought for mouse, which plays a central role in animal studies Materials and Methods : C57BL/6 mouse, lighter than 50 gram, is used for the experiments. The superconducting magnet is vertical type with 89 mm inner diameter at 4.9 Tesla. The diameter of rf-coil is 30 mm. Mostly used techniques are the fast spin echo and the gradient echo pulse sequence. Results : For 2D images, proton density and T2 weighted images are obtained and their optimum experimental variables were sought. Minute structure of mouse brain can be recognized and 3D brain image is also obtained additionally. 3D image will be useful particularly for the dynamic contrast study using various contrast agents. Conclusion : Like the case of human and other small animals, the high resolution of mouse brain is enough to recognize the minute structure of it. Recently, similar studies are reported domestically, but it seems only a beginning stage. Due to easiness of breeding/control, mouse MRI study will soon play a vital part in brain study.

  • PDF

Diffusion-Weighted Imaging as a Stand-Alone Breast Imaging Modality (독립적 검사 방법으로서의 확산강조 자기공명영상검사)

  • Hee Jung Shin;Su Hyun Lee;Woo Kyung Moon
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.29-48
    • /
    • 2021
  • Diffusion-weighted magnetic resonance imaging (DW MRI) is a fast unenhanced technique that shows promise as a stand-alone modality for cancer screening and characterization. Currently, DW MRI may have lower sensitivity than that of dynamic contrast-enhanced MRI as a standalone modality for breast cancer detection but superior to that of mammography, which may provide a useful alternative for supplemental screening. Standardized acquisition and interpretation of DW MRI can improve the image quality and reduce the variability of the results. Furthermore, high-resolution DW MRI, with advanced techniques and postprocessing, will facilitate better detection and characterization of subcentimeter cancers and reduce false-negatives and false-positives. Future results from ongoing prospective multicenter clinical trials using standardized and optimized protocols will facilitate the use of DW MRI as a stand-alone modality.

Motor Areas of the Cerebral Cortex-New Vistas

  • Tanji, Jun
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 1994
  • On the basis of morphological and functional studies, it is now established that there exist multiple motor representation areas in the frontal lobe of subhuman primates. Recent development of analysis on cerebral critical organization in human subjects, utilizing novel techniques of PET and MRI, provides evidence of corresponding motor areas. Each area has its unique sources of inputs from the thalamus and from other parts of the cerebral cortex. To understand functional roles of these multiple motor areas, it is necessary to study neural activity while subjects are performing a variety of motor tasks. In view of high accuracy in spatial and temporal resolution, the analysis of single cells in relation to specific aspects of motor behavior remains to be a powerful research technique. It is with this technique that a number of novel concepts on functional roles of multiple motor areas have been proposed.

  • PDF