• 제목/요약/키워드: High reliability

Search Result 6,425, Processing Time 0.035 seconds

Reliability Growth Assessment for the Rolling Stock System of the Korea High-Speed Train (한국형고속열차 차량시스템의 신뢰성 성장 평가)

  • Park, Chan-Kyung;Seo, Sung-Il;Lee, Tae-Hyung;Kim, Ki-Hwan;Choi, Sung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.606-611
    • /
    • 2006
  • This paper presents a procedure and an analysis method to evaluate reliability of the Korea high-speed train. The rolling stock system is divided into 6 sub-systems and each subsystem is classified into sub-assemblies. Functional analysis has been conducted to draw reliability block diagrams for the sub-systems. First, failure rates has been calculated for each sub-assembly from the failure data obtained during commissioning tests. Then a reliability block diagram is used to evaluate the MKBF(Mean Kilometers Before Failure) of the sub-systems. Activities to increase reliability have been carried out throughout the test runs and analysis results show that the reliability of the rolling stock system is gradually growing in time.

Reliability of Visual Gait Analysis according to Clinical Experience Level of Physical Therapists (임상 물리치료사의 경험에 따른 시각적 보행 분석의 신뢰도 연구)

  • Lee, In-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.174-179
    • /
    • 2013
  • Purpose: Visual gait analysis plays a pivotal role in determining the important gait problem of patients. A few studies have been published and have received little attention regarding visual gait analysis on patients with orthopedic problems. The purposes of this study were to investigate the difference of reliability levels according to experience of clinical physical therapists. Methods: Thirty-five clinical physical therapists, 5 high experienced, 15 experienced, and 15 inexperienced, were recruited and individually evaluated these videotaped gait patterns of the participants, and filled up the structured gait analysis form. The gait of nine participants was videotaped. Reliability levels were calculated by the Intraclass Correlation Coefficients (ICC). Results: The inter-rater reliability of high experienced group (ICC=0.56; 95% CI: 0.50-0.62) was comparable to that of the experienced raters (ICC=0.48; 95% CI: 0.43-0.53) and inexperienced group (ICC=0.42; 95% CI: 0.38-0.46). High experienced group reached a higher inter-rater reliability level. The average intra-rater reliability of the high experienced group was 0.70 (ICCs ranging from 0.54 to 0.82). The experienced group reached an average intra-rater reliability of 0.61 (ICCs ranging from 0.47 to 0.81). The inexperienced group attained average ICC values of 0.53 (ICCs ranging from 0.30 to 0.74). Conclusion: Use of a structured gait analysis form as described in this study was found to be moderately reliable. Clinical experience appears to increase the reliability of visual gait analysis.

Reliability Evaluation of ATC for High Speed Line Center (고속 Line Center의 ATC 신뢰성 평가)

  • Lee S.W.;Kim D.H.;Lee H.K.;Shin D.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1914-1917
    • /
    • 2005
  • Recently, the reliability evaluation and analysis are applied for many industrial products, and many products are required to guarantee in quality and in efficiency. The purpose of this paper is to present some of reliability evaluation methodologies that are applicable to machine tools. Especially ATC(Automatic Too Changer), which is core component of line center, was chosen as the target of the reliability evaluation and analysis. The scope of research is reliability prediction, reliability test and evaluates their results. The results of this research has shown the failure rate, MTBF(Mean Time Between Failure), reliability for those components and real tests reliability through constructed reliability test-bed. It is expected that proposed methodologies will increase reliability for high speed line center.

  • PDF

Method and Application of Reliability Evaluation for Core Units of Machine Tools (공작기계 핵심 Unit의 신뢰성 평가 기법 및 활용에 관한 연구)

  • 이승우;송준엽;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-46
    • /
    • 1997
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high sped and intelligent have been developing for betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and designed and manufactured reliability test-bed to evaluate reliability. In addition we acquired reliability data using test-bed system and made database to handle reliability data. And also we not only use reliability data by analyzing reliability, but also apply design review method using analyzing critical units of machinery system. Form this study, we will expect to guide and increase the reliability engineering in developing and processing phase of high quality product.

  • PDF

Reliability-Based Capacity Rating of High-Speed Rail-Road Bridges (신뢰성에 기초한 고속철도 교량의 내하력평가)

  • 조효남;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.73-81
    • /
    • 1995
  • In Korea, the pilot construction of the first high-speed railroad on the Seoul-Pusan has already started 2 years ago. In the thesis, an attempt is made to develop reliability-based integrity-assessment models for the computer-aided control and maintenance of high-speed railroad bridges. The strength limit state models for PC railroad bridges encompass the bending and shear strengths as well as the strength interaction equations which simultaneously take into the element and system reliablities of the proposed limit states and reliability models. Then, the actual load carrying capacity and the realistic safety of bridges are evaluated using the system reliability-based equivalent strength, and the results are compared with those of the element reliability-based or conventional methods. Various parametric studies are performed for the proposed reliability-based safety and integrity-assessment models using the actual PC box girder bridges used in the pilot construction. And the sensitivity analyses are performed for the basic random variables included in strength limit state models. It is concluded that proposed models may be practically applied for the rational assessment of safety and integrity of high speed railroad bridges.

  • PDF

Reliability Assessment of Traction System of Korean High Speed Train (한국형 고속전철 추진시스템의 신뢰성 평가)

  • 서승일;박춘수;한영재;박태근
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.151-155
    • /
    • 2003
  • In this paper, as the first step to assess and enhance the reliability of Korea High Speed Train, electric traction system is selected and reliability analysis is carried out. The electric traction system is classified into subsystems and functional block diagrams and reliability block diagrams are drawn. Expressions to calculate the reliability are deducted and Mean Kilometer Between Service Failure is calculated using the trial test results on the track. Calculated results show reliability growth of the electric traction system.

  • PDF

Reliability Evaluation of an Oil Cooler for a High-Precision Machining Center

  • Lee, Seung-Woo;Han, Seung-Woo;Lee, Hu-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.50-53
    • /
    • 2007
  • Improving the reliability or long-term dependability of a system requires a different approach from the previous emphasis on short-term concerns. The purpose of this paper is to present a reliability evaluation method for an oil cooler intended for high-precision machining centers. The oil cooler system in question is a cooling device that minimizes the deformation caused from the heat generated by driving devices. This system is used for machine tools and semiconductor equipment. We predicted the reliability of the system based on the failure rate database and conducted the reliability test using a test-bed to evaluate the life of the oil cooler. The results provided an indication of the reliability of the system in terms of the failure rate and the MTBF of the oil cooler system and its components, as well as a distribution of the failure mode. These results will help increase the reliability of oil cooler systems. The evaluation method can also be used to determine the reliability of other machinery products.

Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System (항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계)

  • Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

Quality Function Deployment of Core Unit for Reliability Evaluation of Machine Tools (공작기계 핵심부품의 QFD 기술)

  • 송준엽;이승우;강재훈;강재훈;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.59-62
    • /
    • 2001
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high speed and intelligent have been developing for the betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and design review method using analyzing critical units of high speed and intelligent machine system. In addition, we have not only designed and developed test bed system for acquiring reliability data, but also apply QFD technique for satisfying quality function which is provided in design phase. From this study, we will expect to guide and introduce the reliability engineering in developing and processing phase of high quality product.

  • PDF

Reliability Assessment of Traction System of Korean High Speed Train (한국형 고속열차 추진시스템의 신뢰성 평가)

  • Seo Sung-Il;Park Choon-Soo;Han Young-Jae;Lee Tae-Hyung;Kim Ki-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.434-438
    • /
    • 2005
  • In this paper, as the first step to assess and enhance the reliability of Korea High Speed Train, an electric traction system is selected and reliability analysis is carried out. The electric traction system is classified into subsystems and functional block diagrams and reliability block diagrams are drawn. Expressions for evaluating the reliability are derived and Mean Kilometer Between Service Failure is calculated using the trial track test results. The calculation results show reliability growth of the proposed system.