• Title/Summary/Keyword: High refractive index

Search Result 361, Processing Time 0.026 seconds

Linear and nonlinear optical properties of single component $Sb_2O_3$ system (단성분 $Sb_2O_3$유리의 선형 및 비선현 광학특성에 관한 연구)

  • Kim, Sae-Hoon;Chung, Yong-Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.514-520
    • /
    • 1997
  • A single component of $Sb_2O_3$ glass has been obtained by a rapid quenching method in vacuum. The linear refractive indices were measured as a function of wavelength from 500 nm to 1060 nm. The refractive index at $n_{3{\omega}}$/(633 nm) was as high as 2.00. The optical band gap was estimated as 3.38 eV from the optical absorption spectrum. The third-order nonlinear optical intensity was determined by the third harmonic generation (THG) method. The $\chi^{(3)}$value was as high as $5.68{\times}10^{-13}$esu, about 20 times larger than that of $SiO_2$ glass.

  • PDF

The Properties of Multi-Layered Optical Thin Films Fabricated by Pulsed DC Magnetron Sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조된 다층 광학박막의 특성)

  • Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.211-226
    • /
    • 2019
  • Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.

Optical Properties Analysis of SiNx Double Layer Anti Reflection Coating by PECVD

  • Gong, Dae-Yeong;Park, Seung-Man;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.149-149
    • /
    • 2010
  • The double-layer antireflection (DLAR) coatings have significant advantages over single-layer antireflection (SLAR) coatings. This is because they will be able to cover a broad range of the solar spectrum which would enhance the overall performance of solar cells. Moreover films deposited at high frequency are expected to show excellent and UV-stable passivation in the refractive index that we adopted. In this work, we present a novel DLAR coating using SiNx:H thin films with refractive indices 1.9 and 2.3 as the top and bottom layers. This approach is cost effective when compared to earlier DLAR coatings with two different materials. SiNx:H films were deposited by Plasma enhanced chemical vapor deposition (PECVD) technique using $SiH_4$, $NH_3$ and $N_2$ gases with flow rates 20~80sccm, 200sccm and 85 sccm respectively. The RF power, plasma frequency and substrate temperature for the deposition were 300W, 13.56 MHz and $450^{\circ}C$, respectively. The optimum thickness and refractive indices values for DLAR coatings were estimated theoretically using Macleod simulation software as 82.24 nm for 1.9 and 68.58 nm for 2.3 respectively. Solar cells were fabricated with SLAR and DLAR coatings of SiNx:H films and compared the cell efficacy. SiNx:H> films deposited at a substrate temperature of $450^{\circ}C$ and that at 300 W power showed best effective minority carrier lifetime around $50.8\;{\mu}s$. Average reflectance values of SLAR coatings with refractive indices 1.9, 2.05 and 2.3 were 10.1%, 9.66% and 9.33% respectively. In contrast, optimized DLAR coating showed a reflectance value as low as 8.98% in the wavelength range 300nm - 1100nm.

  • PDF

Anti-Reflection Coating Technology Based High Refractive Index Lens with Ultra-Violet Rays Blocking Function (반사방지 코팅기술 기반 자외선 차단 기능의 고굴절률 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.482-487
    • /
    • 2016
  • Ultra-violet rays are very harmful to eye health care. The blocking of ultra-violet rays and a reduction of optical reflection in the visible light range, which is to increase the share of transmitted light, and avoid the formation of ghost images in imaging, are important for the applications of polymer eyeglasses lenses. In this study, the high-refractive index polymer lenses, n=1.67, were fabricated by injection-molded method with the xylene diisocyanate monomer, 2,3-bis-1-propanethiol monomer, and benzotriazol UV absorber (SEESORB 709) mixture. To reduce the reflection of the polymer lens surfaces, multi-layer anti-reflection (AR) coatings were coated for both sides of the polymer lens using an E-beam evaporation system. The optical properties of the UV blocking polymer lens were characterized using a UV-visible spectrometer. The material properties of the thin films, which were composed AR coating layers, refractive index, and surface roughness, were analyzed by ellipsometry and atomic force microscopy. As a result, the fabricated polymer lens perfectly blocked ultra-violet rays below 395 nm with a blocking rate greater than 99%.

UV Absorbent-added Polymerization and its Application as Ophthalmological Material (자외선 흡수제를 첨가한 고분자 중합 및 안 의료용 소재로의 적용)

  • Sung, A-Young;Kim, Tae-Hun;Ye, Ki-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • This study was done for the preparation of macromolecular material with UV-blocking features by adding the benzophenone group that is commonly used as a UV-absorbent and $TiO_2$ which is known to be a very stable material in chemical and physical aspects. Also, we compared the level of UV absorbency of the polymer produced from polymerization with previous materials and measured basic properties such as water content, refractive index and optical transmittance of produced contact lenses. The results of the measurement showed that the refractive index and water content of the contact lens with added UV-absorbent was 1.430~1.440 and 35.0~45.0% respectively, which was similar to that of previous contact lenses. Also, for optical transmittances of each wave length, contact lenses without the UV-absorbent was 89%, 88% and 89% respectively for UV-A, UV-B and visible light, indicating that the UV transmittance is very high though contrary with cases of contact lenses with added 2-hydroxy-4-methoxy-benzophenone and 2,4-dihydroxy-benzophenone which showed transmittances of 0% and 6% respectively for UV-A and UV-B showing a UV-blocking effect. Meanwhile, contact lenses with added $TiO_2$ showed transmittance of 6% and 51% respectively for UV-A and UV-B also showing a UV-blocking effect. The visible transmittance was 77~89% showing that it satisfies the visible transmittance required for ophthalmological materials.

A Novel Asymmetric Vertical Directional Coupler Switch (비대칭 수직 방향성 결합기 스위치)

  • Jo, Seong-Chan;Jeong, Byeong-Min;Kim, Bu-Gyun;Choe, Ji-Yeon;Hwang, Hyeong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.31-40
    • /
    • 2002
  • We propose a novel ultra-short asymmetric vertical directional coupler switch (VDCS) with high extinction ratios larger than 30㏈ composed of switching operation induced section (SOIS), extinction ratio adjusted section (ERAS), and extinction ratio enhanced section (ERES). In this VDCSs, switching operation is achieved by changing the refractive index of one core in SOIS. The improvement of extinction ratios larger than 30㏈ for both cross and bar states is achieved by controlling the asymmetry of refractive indices between both cores in ERES. After propagating through ERAS with symmetry in the structure, different extinction ratios between cross and bar states at the end of SOIS are changed to the same value. For this reason, the optimum asymmetry of the refractive indices of cores to have the maximum extinction ratios and the lengths of ERES are the same for cross and bar states. Design guidelines to achieve high extinction ratios with large tolerances are presented.

Study on SiN and SiCN film production using PE-ALD process with high-density multi-ICP source at low temperature

  • Song, Hohyun;Seo, Sanghun;Chang, Hongyoung
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1436-1440
    • /
    • 2018
  • SiN and SiCN film production using plasma-enhanced atomic layer deposition (PE-ALD) is investigated in this study. A developed high-power and high-density multiple inductively coupled plasma (multi-ICP) source is used for a low temperature PE-ALD process. High plasma density and good uniformity are obtained by high power $N_2$ plasma discharge. Silicon nitride films are deposited on a 300-mm wafer using the PE-ALD method at low temperature. To analyze the quality of the SiN and SiCN films, the wet etch rate, refractive index, and growth rate of the thin films are measured. Experiments are performed by changing the applied power and the process temperature ($300-500^{\circ}C$).

The study of the fabrication and physical properties of porous silicon multilayers (다층구조를 갖는 다공질규소층의 제작과 이의 물성)

  • 김영유;전종현;류성주;이영섭;이기원;최봉수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.597-600
    • /
    • 1999
  • By periodically varying the current density and etching time during anodic oxidation of crustalline silicon wafers in 15% HF-ethanol solution, we obtained porous silicon multilayers which have periodically varying refractive index. We fabricated the porous silicon microcavity (PSM) which consist of porous silicon multilayers (I), active layer of porous silicon, and porous silicon multilayers (II) and investigated its physical properties. The AFM (Atomic Force Microscope) measurement from the cross section of multilayers (I and II) shows uniformity of high refractive index and low index layers as well as the active layer. We observed the characteristics of Bragg reflector when the thickness of layers was 1/4 and the thickness of active layer was twice of the effective wavelength, which can be used as a filter for specific wavelength. We found the emission characteristic from the PSM, which FWHM (full width half maximum) was considerably decreased and emission intensity was increased.

  • PDF

The Properties of Optical Glass of B2O3-SiO2-La2O3 System with Li2O (Li2O가 포함된 B2O3-SiO2-La2O3계 광학 유리 특성)

  • Ji-Sun Lee;Sae-Hoon Kim;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.560-564
    • /
    • 2022
  • In this study, lanthanum boron silicate glasses were prepared with a composition of x Li2O-(60-x)B2O3-5CaO-5BaO-7ZnO-10SiO2-10La2O3-3Y2O3 where x = 1,3,5,7, and 9 mol%. Each composition was melted in a platinum crucible under atmospheric conditions at 1,400 ℃ for 2 h. Clear glasses with a transmittance exceeding 85 % were fabricated. Their optical, thermal, and physical properties, such as refractive index, Abbe number, density, glass transition (Tg) and Knoop hardness were studied. The results demonstrated that refractive index was between 1.6859 and 1.6953 at 589.3 nm. The Abbe number was calculated using an equation for 589.3 nm (nd), 656.3 nm (nf) and 486.1 nm (nc) and was observed to be in the range from 57.5 to 62.6. As the Li2O content increased, the glass transition temperature of the optical glass decreased from 608 ℃ to 564 ℃. If glass mold pressing is performed using a material with a low transition temperature and high mechanical strength, then the optical glasses developed in this study can be completely commercialized.

Implementation of Novel Bio-sensor Platform based on Optical Taper Coupler (광 테이퍼 결합기에 기초한 새로운 바이오-센서 플랫폼의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.145-150
    • /
    • 2023
  • Non-uniform optical taper waveguides have been widely used as devices for high-efficiency mode coupling, as they are integrated with single-mode optical fibers or photonic crystal waveguides. In this paper, we present a new platform for chemical sensing and bio-sensing using optical taper waveguides with these characteristics. The principle of operation is based on the coupling efficiency and interference properties of optical directional coupler (DC) and multi-mode interference coupler (MMIC). First, the curvature characteristics of taper sections of DC and MMIC is explained, and the design specifications of optimized taper waveguide to increase waveguide sensitivity is selected. Next, the sensor response to the change in refractive index of sensing analyte is numerically analyzed. Numerical results show that as the length of couplers increases, the effective index per change in refractive index unit (RIU) of analyte increases, and that sensitivity can be tuned using taper DC and MMIC design techniques.