• Title/Summary/Keyword: High quantum yield

Search Result 88, Processing Time 0.027 seconds

Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes (세슘납할로겐화물 페로브스카이트 기반 LED 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.737-749
    • /
    • 2016
  • Recently perovskite materials with much cheaper cost and marvellous optoelectronic properties have been studied for next generation LED display devices overseas. Technology development trends of inorganic $CsPbX_3$(X=halogen) based LEDs (PeLEDs) with assumed high stability were investigated on literature worldwide. It was found that syntheses methods of these nanocrystals (NCs, mainly quantum dots, QDs) made great progress. A new room temperature synthesis method showed outstanding PL (photoluminescence) properties such as high quantum yield (QY), narrow emission width, storage stability comparable with, or often exceeding those of conventional hot injection method and CdSe@ZnS type inorganic colloidal QDs. PeLEDs with shell layers might be more promising, indicating urgent real research start of this solution processing technology for small businesses in Korea.

One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions

  • Tam, Tran Van;Choi, Won Mook
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1255-1260
    • /
    • 2018
  • In this work, a green and simple one-pot route was developed for the synthesis of highly fluorescent aminofunctionalized graphene quantum dots (a-GQDs) via hydrothermal process without any further modification or surface passivation. We synthesized the a-GQDs using glucose as the carbon source and ammonium as a functionalizing agent without the use of a strong acid, oxidant, or other toxic chemical reagent. The as-obtained aGQDs have a uniform size of 3-4 nm, high contents of amino groups, and show a bright green emission with high quantum yield of 32.8%. Furthermore, the a-GQDs show effective fluorescence quenching for $Cu^{2+}$ ions which can serve as effective fluorescent probe for the detection of $Cu^{2+}$. The fluorescent probe using the obtained aGQDs exhibits high sensitivity and selectivity toward $Cu^{2+}$ with the limit of detection as low as 5.6 nM. The mechanism of the $Cu^{2+}$ induced fluorescence quenching of a-GQDs can be attributed to the electron transfer by the formation of metal complex between $Cu^{2+}$ and the amino groups on the surface of a-GQDs. These results suggest great potential for the simple and green synthesis of functionalized GQDs and a practical sensing platform for $Cu^{2+}$ detection in environmental and biological applications.

Luminescent Polynorbornene/Quantum Dot Composite Nanorods and Nanotubes Prepared from AAO Membrane Templates

  • Oh, Se-Won;Cho, Young-Hyun;Char, Kook-Heon
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.995-1002
    • /
    • 2009
  • Luminescent polynorbornene (PNB)/quantum dot (CdSe@ZnS; QD) composite nanorods and nanotubes were successfully prepared using anodic aluminum oxide (AAO) membranes of various pore sizes as templates. To protect QDs with high quantum yield from quenching during the phosphoric acid treatment used to remove the AAO templates, chemically stable and optically clear norbornene-maleic anhydride copolymers (P(NB-r-MA)) were employed as a capping agent for QDs. The amine-terminated QDs reacted with maleic anhydride moieties in P(NB-r-MA) to form PNB-grafted QDs. The chemical- and photo-stability of QDs encapsulated with PNB copolymers were investigated by photoluminescence (PL) spectroscopy. By varying the pore size of the AAO templates from 40 to 380 urn, PNB/QD composite nanorods or nanotubes were obtained with a good dispersion of QDs in the PNB matrix.

White Light -Emitting Diodes with Multi-Shell Quantum Dots

  • Kim, Kyung-Nam;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.92-92
    • /
    • 2010
  • Replacing the existing illumination with solid-state lighting devices, such as light-emitting diodes (LEDs) are expected to reduce energy consumption and environmental pollution as they provide better efficiency and longer lifetimes. Currently, white light emitting diodes are composed of UV or blue LED with down-converting materials such as highly luminescent phosphors White light-emitting diodes (LED) were fabricated with multi-shell nanocrystal quantum dots for enhanced luminance and improved stability over time. Multi-shell quantum dots (QDs) were synthesized through one pot process by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. As prepared, the multi-shell QD has cubic lattice of zinc-blend structure with semi-spherical shape with quantum yield of higher than 60 % in solution. Further, highly fluorescent multi-shell QD was deposited on the blue LED, which resulted in QD-based white LED with high luminance with excellent color rendering properties.

  • PDF

A Novel Fluorescent Dipyrido[3,2-a:2',3'-c]phenazine (dppz) Derivative Prepared by Amide Bonding

  • Choi, Chang-Shik;Jeon, Ki-Seok;Lee, Ki-Hwan;Yoon, Min-Joong;Kwak, Min-Hee;Lee, Sang-Woo;Kim, In-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1601-1603
    • /
    • 2006
  • A novel fluorescent dipyrido[3,2-a:2',3'-c]phenazine (dppz) derivative, 7-(4-methoxybenzoylamino) dppz (1), was synthesized by amide connection to position 7 of the dppz ring. Its fluorescence quantum yield ($\Phi$ = 0.21 in dichloromethane) was as high as that of the conventional 7-amino-dppz (3), and its fluorescence lifetime was much shorter than that of 3.

Symmetric Bis-Azospiropyrans: Synthesis, Characterization and Colorimetric Study

  • Nourmohammadian, Farahnaz;Abdi, Ali Ashtiani
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1727-1734
    • /
    • 2013
  • Synthesis and characterization of some novel symmetric bis-azospiropyrans are reported in this study. These bis-azospiropyrans are bifunctional chromophores with two spiropyrans linked by a bis-azo extended aromatic system that produce more color strength (large molar absorption coefficient in mero forms) due to appending two azospiropyran chromophores on one molecule. Comparing to the molar absorption coefficients of the conventional spiropyran chromophores (${\varepsilon}=0.31{\times}10^4\;M^{-1}{\cdot}cm^{-1}$) and mono-azospiropyran chromophores ($1.35{\times}10^4\;M^{-1}{\cdot}cm^{-1}$), the novel synthesized photochromes showed astonishingly increased molar absorption coefficients ($2.3-3.8{\times}10^4\;M^{-1}{\cdot}cm^{-1}$) at the same conditions. Such high molar absorption coefficients confers high sensitivity to light and more color intensity of mero form, that leads to improvement of their light sensitivity and better discrimination of spiro (OFF) form from mero (ON) ones in molecular switches. The structures were deduced from their MS, FT-IR, and $^1H$-NMR spectroscopic data and CHN analysis. All the synthesized photochemically bifunctional compounds revealed fluorescent emission in their colorless form which was faded out after exposing to UV light. Fluorescence quantum yield values of the mero forms were 0.25-0.81 and two high fluorescence quantum yield values (0.60 and 0.81) were found in these series.

Simulation Study of a Large Area CMOS Image Sensor for X-ray DR Detector with Separate ROICs (센서-회로 분리형 엑스선 DR 검출기를 위한 대면적 CMOS 영상센서 모사 연구)

  • Kim, Myung Soo;Kim, Hyoungtak;Kang, Dong-uk;Yoo, Hyun Jun;Cho, Minsik;Lee, Dae Hee;Bae, Jun Hyung;Kim, Jongyul;Kim, Hyunduk;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • There are two methods to fabricate the readout electronic to a large-area CMOS image sensor (LACIS). One is to design and manufacture the sensor part and signal processing electronics in a single chip and the other is to integrate both parts with bump bonding or wire bonding after manufacturing both parts separately. The latter method has an advantage of the high yield because the optimized and specialized fabrication process can be chosen in designing and manufacturing each part. In this paper, LACIS chip, that is optimized design for the latter method of fabrication, is presented. The LACIS chip consists of a 3-TR pixel photodiode array, row driver (or called as a gate driver) circuit, and bonding pads to the external readout ICs. Among 4 types of the photodiode structure available in a standard CMOS process, $N_{photo}/P_{epi}$ type photodiode showed the highest quantum efficiency in the simulation study, though it requires one additional mask to control the doping concentration of $N_{photo}$ layer. The optimized channel widths and lengths of 3 pixel transistors are also determined by simulation. The select transistor is not significantly affected by channel length and width. But source follower transistor is strongly influenced by length and width. In row driver, to reduce signal time delay by high capacitance at output node, three stage inverter drivers are used. And channel width of the inverter driver increases gradually in each step. The sensor has very long metal wire that is about 170 mm. The repeater consisted of inverters is applied proper amount of pixel rows. It can help to reduce the long metal-line delay.

광량과 온도 변화에 따른 고추(Capsicum annuum L.) 잎 광계 II의 광억제

  • 홍영남
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.373-380
    • /
    • 1995
  • Photoinhibition of photosystem (PS) n was induced in primary leaves of 25 day-old peppers grown $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1},\;at\;25^{\circ}C$. The modulation of PSII functionality in vivo was induced by varying both irradiance ($0-3000\;{\mu}molm^{-2}{\cdot}s^{-1}$) and duration (0-70 min) of light treatment. The functionality of PSII was investigated in terms of photochemical efficiency of PSII (Fv/Fm) and quantum yield of $O_2$ evolution, and expressed as a function of photon exposure [$mol\;photons{\cdot}m^{-2}$, the product of irradiance and duration of light treatment (Bell and Rose, 1981)]. Contrary to the linear decline of Fv/Fm ratio showing 50% decreases by absorption of $10\;mol\;photons{\cdot}m^{-2$, quantum yield of $O_2$ evolution decreased biphasically with increasing photon exposure, showing 50% decreases by absorption of $5.5\;mol\;photons{\cdot}m^{-2}$. Treatment of low temperature at $15^{\circ}C$ for 30 min alone did not affect the functionality of PSII, but high temperature ($45^{\circ}C$) significantly inactivated PSII activity. However, when Jeaves of pepper were subjected to low or high temperature in the presence of light, PSII was substantially photoinactivated. These results suggest the presence of different photoinhibitory mechanisms at low and high temperature.rature.

  • PDF

Photosynthetic Responses of the Benthic Diatom Nitzschia sp. to Selected Heavy Metals and Herbicides (일부 중금속과 제초제에 대한 저서규조류 Nitzschia sp.의 광합성 반응)

  • Kang, Eun-Ju;Choi, Tae-Seob;Kim, Kwang-Young
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.319-323
    • /
    • 2007
  • This study was conducted with using chlorophyll a fluorescence (indicated as photosynthetic activity) to examine the toxic effect of 96 h exposure of heavy metals and herbicides on the benthic diatom Nitzschia sp. which was isolated from pristine sediment in Pamquat Harbour, Nova Scotia, Canada. Samples of benthic diatom were exposed to 0, 0.01, 0.1 and 1 mg L–1 of copper, 0, 1, 10 and 100 mg L–1 of chrome (VI), 0, 2.45, 24.5 and 245 mg L–1 of paraquat dichloride, and 0, 4.37, 43.7 and 437 mg L–1 of alachlor during 96 hours. The effective quantum yield of photochemistry (ΔF/Fm’) was evaluated by subjecting light acclimated samples to saturating pulses of light using a pulse amplitude modulated (PAM) fluorometer. The impact of heavy metals on Nitzschia sp. photosynthesis was not severe in < 1 mg L–1 but in the high concentrations (> 1 mg L–1) clearly increased toxic stress during 96 h. Herbicides had a limited impact during the exposure period but clearly increased stress on the benthic diatom with increasing concentrations. Acute response of Nitzschia sp. to selected heavy metals and herbicides was characterized, and the capacity of a benthic diatom to tolerate and recover from toxic stress was assessed.

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.