• Title/Summary/Keyword: High pressure spray

Search Result 511, Processing Time 0.025 seconds

Comparison of LPG/Diesel Sprays in high Pressure Injection System (고압 LPG/디젤연료의 분무특성 비교)

  • 박권하
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.77-85
    • /
    • 2000
  • LPG gains many advantages of a high octane number low emissions and low cost over conventional fuel. The fuel has been naturally used in engines to save running cost but the first generation fuel feeding system was not satisfied with stringent requirement for exhaust emissions, A liquid direct injection system into a cylinder has been suggested as a next generation system to maximize a fuel economy as well as to reduce emissions. In this paper LPG sprays are compared with diesel sprays in a high pressured surrounding condition in order to understand the high pressure spray characteristics, The spray images show that LPG spray penetrates further soon after the injection then the sprays stays in a distant. it may explain the flashing effect of LPG.

  • PDF

The Numerical Study on Breakup and Vaporization Process of GDI Spray under High-Temperature and High-Pressure Conditions (고온.고압의 분위기 조건에서 GDI 분무의 분열 및 증발과정에 대한 수치적 연구)

  • 심영삼;황순철;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.44-50
    • /
    • 2004
  • The purpose of this study is to improve the prediction ability of the atomization and vaporization processes of GDI spray under high-pressure and high-temperature conditions. Several models have been introduced and compared. The atomization process was modeled using hybrid breakup model that is composed of Conical Sheet Disintegration (CSD) model and Aerodynamically Progressed TAB(APTAB) model. The vaporization process was modeled using Spalding model, modified Spalding model and Abramzon & Sirignano model. Exciplex fluorescence method was used for comparing the calculated with the experimental results. The experiment and calculation were performed at the ambient pressure of 0.5 MPa and 1.0 MPa and the ambient temperature of 473k. Comparison of caldulated and experimental spray characteristics was carried out and Abramzon & Sirignano model and modified Spalding model had the better prediction ability for vaporization process than Spalding model.

Numerical Analysis of the Effect of Injection Pressure Variation on Spray Characteristics (분사압력변화가 분무특성에 미치는 영향에 관한 수치적 고찰)

  • Park K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.113-119
    • /
    • 1997
  • This paper addresses to the injection pressure effect on the diesel spray. The injection pressure is varied from 10MPa, in general system, upto 200MPa, in high pressured system in order to understand the effect. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. The droplet distributions, vapor fractions and gas flows are analyzed in various injection pressure cases.

  • PDF

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

Some Tests on Spray of a Prismatic Planing Hull (주상활주선형(柱狀滑走船型)의 SPRAY 관측(觀測)과 저면압력분포(底面壓力分布))

  • Mun-Keun Ha;Michio Nakato
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.100-111
    • /
    • 1994
  • This study was carried out for understanding the characteristics of the spray around high speed vessels. Prismatic planing hull made of an acrylate board was used to the tests. The distribution of local spray velocity were estimated from the analysis of the spray visualization. A new test system for measuring the spray thickness is proposed, and was used to estimate the local spray thickness in the model. The pressure distributions on the bottom of the hull are measured and integrated to estimate the pressure drag of the model in the towing tests. Finally. the spray drag/lift component is separated from the total drag/lift on the prismatic hull. These test results show that the spray drag component on high speed vessels is relatively large and important in total drag.

  • PDF

A Study on the spray characteristics according to injection conditions for LPG injector (분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구)

  • Ryu, Jea-Duk;Yoon, Yong-Won;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF

Prediction of Heat Transfer Rates to Spray Water Droplets in a High Pressure Mixture Composed of Saturated Steam and Noncondensable Hydrogen Gas (고압의 포화수증기-비응축성 수소기체 혼합기 속에서 분무수적으로의 열전달을 예측)

  • Lee, S.K.;Jo, J.C.;Cho, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.337-349
    • /
    • 1991
  • Heat and mass transfer rates to spray water droplets for spray transients in a high pressure vessel have been predicted by two different droplet models: the complete mixing model and the non-mixing model. In this process, the ambient fluid surrounding the droplets is a real-gas mixture composed of saturated steam and noncondensable hydrogen gas at high pressure. The physical properties of the mixture are estimated by applying the concept of compressibility factor and using appropriate correlations. A computer program, DROPHMT, to calculate the heat and mass transfer rates for two different droplet models has been developed. As an illustrative application of the computer program to engineering practices, heat and mass transfer rates to spray water droplets for spray transients in a Pressurized Water Reactor (PWR) pressurizer have been calculated, and the typical results have been provided.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

Lamination of Dielectric Layers by High Pressure Spray Coating for LTCC (고압 스프레이 코팅법에 의한 저온동시소성세라믹(LTCC) 유전체 층의 적층방법)

  • Lee, Jee-Hee;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.33-38
    • /
    • 2006
  • Aerosol slurry composed of dielectric materials, distilled water, and deflocculants was sprayed on the substrates, through a high-pressure spray gun as an aerosol. The coated layers were cofired together with $Al_{2}O_{3}$ substrates and green sheets on which the inner connectors were printed. Although the coating rate of coated layers strongly depended on slurry viscosity, spray shape, and the pressure of the spray gun, the coated density was not changed. Buried conductors were maintained as printed by high pressure spray coating method, because the pressing process was not used. At the optimum condition of air controller step 3-4 and slurry viscosity c.p 2000-4000, dense and uniform layers could be achieved. Comparing with conventional lamination process using green sheets, spray coating method enabled thin dielectric layers of $20{\sim}50{\mu}m$.

  • PDF

Study of Spray Droplet/Wall Interaction (분무액적과 벽의 상호작용에 대한 연구)

  • 양희천;유홍선;정연태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF