• 제목/요약/키워드: High pressure spray

검색결과 511건 처리시간 0.022초

초고압 경유-물 혼합연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Diesel-Water Emulsion with Ultra High Pressure)

  • 정대용;이종태
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2003
  • Spray characteristics on diesel- water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure. Spray Patterns were visualized under various water content and injection pressures. Spray tip penetration was increased and spray angle decreased in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure.

  • PDF

커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향 (Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구 (An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구 (The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray)

  • 문석수;;최재준;배충식
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

고온.고압용기에서의 핀틀노즐의 분무특성에 관한 실험적 연구 (An Experimental studies Spray characteristic of Pintle type Nozzle on High Pressure Chamber)

  • 송규근;정재연;오은탁;류호성;안병규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.67-73
    • /
    • 2002
  • The characteristics of fuel spray influence on the engine performances such as power, fuel economy and emissions. therefore, the measurement of fuel spray characteristics is very important for the improvement of heat engine. The factor which controls the fuel spray is injection pressure, ambient pressure, engine speed et al.. In :his study, We measured spray angle, spray penetration and spray tip velocity considering injection pressure(10,14㎫), ambient pressure(3,4,5㎫), fuel pump speed(500,700,900rpm) in the high temperature and pressure chamber. Experimental results are summarized as follows: 1) Injection pressure influence on the characteristics of spray namely As Injection pressure Is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle, spray penetration is increased by increasing the fuel pump speed. 3) Ambient pressure plays an important role in spray characteristics.

  • PDF

극초고압 디젤분무의 충격파가 디젤분무특성에 미치는 영향 (Effect of Shockwave on Diesel Spray Characteristics in Ultra High Pressure Injection)

  • 정대용;이종태
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.10-16
    • /
    • 2005
  • To investigate the effect of shockwave on diesel spray characteristics under ultra high pressure injection, the velocity of spray tip and shock wave were investigated using the visualization of spray by schlieren method. Spray characteristics such as the spray radius, height, and droplets size were analyzed. It is found in this study that shock wave, produced by ultra high injection pressure, propagates faster than spray tip. Spray radius of right side of nozzle tip was shorter than that of left side and spray height of right side of nozzle tip was thicker than that of left side. Droplets sue was increased at 414MPa in injection pressure because of pressure gradient between inner and outer of tile spray caused by shockwave.

  • PDF

전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구(II) (A Study on the Behaviour of Ultra-High Pressure Diesel Spray by Electronic Hydraulic Fuel Injection System(II))

  • 장세호;안수길
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.182-190
    • /
    • 1998
  • Behaviour of ultra-high pressure diesel spray in a constant-volume pressure chamber was studied with injection pressure ranging from 20 to 160㎫. Sprays were observed by the right angle scattering method. As a result, the spray tip penetration is first proportional to a time, and after that, it is proportional to 0.52 of the time during at the time of injection pressure and back pressure increase. An empirical correlation was made for the parameters of injection pressure, air-fuel density ratio, spray tip distance, spray angle, jet angle of spray and max. spray width.

  • PDF

극초고압 디젤 자유분무의 미시적 분무특성에 관한 연구 (A Study on Microscopic Spray Characteristics of Free Spray of Diesel with Ultra High Pressure)

  • 정대용;이종태
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.7-12
    • /
    • 2005
  • In order to analyze the microscopic spray characteristics of free spray in ultra high pressure region, the droplets size and velocity of free spray injected under atmosphere condition were measured by PDPA. As injection pressure became ultra high pressure, the droplets size was decreased continuously due to the increase of mutual reaction between droplets and air. But the decreasing rate became moderate. The velocity was increased until 250 MPa, and then decreased over that of injection pressure. It was seemed that the droplet size was similar in range of $280\~350\;MPa$, but increased in 414 MPa, even though injection pressure was increased. The microscopic spray characteristics of free spray got worse in 414 MPa.

고압에서의 분무의 증발 및 연소 현상에 관한 연구 (Study on Vaporization and Combustion of Spray in High Pressure Environment)

  • 왕태중;백승욱
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

극초고압 디젤충돌분무의 충돌거리 및 충돌각에 대한 분무특성 해석 (An Analysis on Ultra High Pressure Impinging Diesel Spray Characteristics with Impinging Distance and Impinging Angle)

  • 정대용;김홍준;정찬문;이종태
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.17-23
    • /
    • 2003
  • To find suitable injection pressure, ultra high pressure impinging spray characteristics were investigated with a impinging distance and a impinging angle by using high pressure injection system. As impinging distance was increased, spray penetration was decreased but spray height was increased. For increase of injection pressure, spray penetration and spray height were increased until 2,500bar. But over this injection pressure region, the rate of increase was decreased suddenly.

  • PDF