• Title/Summary/Keyword: High pressure pipe

Search Result 365, Processing Time 0.026 seconds

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관 안전관리 고찰)

  • Choi, Hyun-Woong;Chung, Se-Kwang;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.30-38
    • /
    • 2017
  • Established in the 1960s, high pressure underground pipelines in Ulsan and Yeosu industrial estate are underground as toxic gas as well as combustible gas that is heavier than city gas and low combustion range. Especially, industrial pipelines occupy more than 20 years old pipes. In this way, the industrial estate pipeline was installed before the introduction of the supervision of construction, However, unlike the city gas pipeline, the pipeline is managed without any legal obligation. In this study, the safety management status of high pressure underground pipelines and urban gas underground pipelines in the industrial estate is analyzed and comparison of laws, extent of damage impact, using the pipe inspection model for pipe inspection of high pressure piping system with the existing piping system. it is intended to cuntribute to improving the safety of industrial estate are underground pipeline.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

An Experimental Study on the Mechanical Impact (Third Party Damage) of High Pressure Gas Pipe (고압가스배관의 기계적 충격(타공사)에 대한 실험적 연구)

  • Lee, Kyung-eun;Kim, Jeong Hwan;Ha, Yu-jin;Kil, Seong-he
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2017
  • One of the main causes of gas pipeline accidents is mechanical impact(third party damage). The majority of high pressure gas pipelines buried in major domestic industrial complexes are old pipes which have being operated over 20 years. Therefore, if an accident occurs, there will be a full scale accident because there is no additional inspection and reinforcement time. In this study, the defects on the piping during the mechanical impact were studied through the third party damage(excavation) experiments. Experiments were carried out using the 21 ton excavator which is operated in the actual excavation work and the type of pipe to be struck are ASTM A106 Grade.B and ASTM A53 Grade.B. As a result, when the bucket used during excavator operation is a sawtooth bucket, the defect is more bigger. And the smaller the diameter of the pipe, the smaller the depth and length of the defect. Also, it was confirmed that the impact height had no effect on the defects on the buried pipe, during the excavation work.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Safety Assessment of By-product Gas Piping after Design Change (부생가스 연료배관의 설계변경에 따른 안전성 평가)

  • Yoon, Kee Bong;Nguyen, Van Giang;Nguyen, Tuan Son;Jeong, Seong Yong;Lee, Joo Young;Kim, Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.50-58
    • /
    • 2013
  • Various process piping usually carries out high flammable and explosible gas under high pressure and high temperature. Due to frequent change of design and structure it becomes more complicated and compactly located. The safety management level is relatively low since it is considered as simply designed component. In this study a safety assessment procedure is proposed for complicated piping system around a mixing drum in which natural gas and by-product gases were mixed. According to ASME code, pipe stress analysis was conducted for determining design margin at some key locations of the piping. These high stress locations can be used as major inspection points for managing the pipe integrity. Sensitivity analysis with outside temperature of the pipe and support constraint condition. Possible effect of hydroen gas to the pipe steel during the previous use of the by-product gas was also discussed.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring (오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석)

  • 맹주성;양시영;서현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants (원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구)

  • Lee, Seung-Pyo;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

Thermal Behavior of a Pipe-Rack Structure Subjected to Environmental Factors (외부 환경적 요인에 의한 파이프랙 구조물의 열적 거동)

  • Lee, Jong-Han;Lee, Jong-Jae;Kim, Sung-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • Pipe-rack structures supporting high temperature and pressure are of great importance to ensure the safety of the operation of the plants. If some damage occurred in the pipe-rack structure, the facilities not only bring damage to the commercial property, but also result in economic losses. Specially, since pipe-rack structures are exposed to various environmental conditions, it is essential to evaluate the thermal behavior of the structure caused by environmental conditions for the appropriate design and maintenance of the pipe-rack structure. Thus, based on a selected, typical pipe-rack structure, a thermal-stress coupled analysis was conducted to evaluate the temperature distributions and thermal stresses of the structure. For this, this study accounted for the operating condition of the pipe and the effect of environmental conditions, Yeosu in South Korea and Saudi Arabia in the Middle East. The results of the study showed the need for accounting for a variance in the environmental factors to evaluate the thermal behavior of the pipe-rack structure along with the working condition of pipe.

A study on the Development of Purge Burner for City Gas (도시가스용 퍼지 버너 개발에 관한 연구(II))

  • Lee, Hyun-Chan;You, Hyun-Seok;Lee, Joong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.175-179
    • /
    • 2000
  • A combustion project was completed regarding the development of a high-flow-rate purge burner in cooperation with three city gas companies(Pusan, Taegu, Samchulli). The project, started in May 1991, aimed at purging the line-packed-gas safely and quickly before getting into gas pipe working or relocation. According to the results, the purging noise is less than 80dB due to silencer screen. multi-nozzle and outlet inserted tube employed. In addition, the developed burner shows an increased work efficiency of 40-50% more as compared to the performance of conventional purge equipments. The project result is regarded as the first high-flow-rate purge burner developed within Korea. contributing to shortening purge hours, safe field work and easiness of purge site selection.

  • PDF