• Title/Summary/Keyword: High pressure carbon dioxide

Search Result 206, Processing Time 0.031 seconds

A Study on the Development of Computer Software for the Design of Fire Protection System (방화설비계통 설계용 전산소프트웨어 개발에 관한 연구)

  • 이정혜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Standard on the carbon dioxide extinguishing system was prepared by the committed of the national fire protection assocition(NFPA)in USA on 1980. And this code is also applied to the design of a marine fire extinguishing system The most important problem in design is the uniform discharge of $CO_2$ through each nozzle from the high pressure $CO_2$ storage facility. The purpose of this paper is to develop the computer software to design the marine fire protection piping system. By solving the continuity equation energy equation and Bernoulli's equation simulataneously the flowrate in branch pipelines and discharge nozzles can be calculated.

  • PDF

CaO Manufacture for $CO_2$ Adsorption at a High Temperature (고온에서의 이산화탄소 흡착을 위한 흡착제 CaO 제조)

  • Lee Tae-Jong;Kim Gil-Soo;Baek Il-Hyun;Kim Bu-Ung
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.27-32
    • /
    • 2001
  • It is desired that carbon dioxide causing a greenhouse effect be removed at a high temperature and high pressure in a steam reforming reaction. In this research, a pellet form of adsorbent CaO is employed to capture $CO_2$. The adsorbent was manufactured using a high pressure molding on powdered $CaCO_3$ followed by calcination. Then its properties were analyzed and the adsorption experiments were carried out in a batch adsorption chamber. The pore area was found to be dependent on a molding pressure and the pore distribution showed two peaks. It is examined that $CO_2$ binds to CaO by means of chemisorption and its maximum conversion is nearly $80\%$ at $700^{\circ}C$.

  • PDF

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • Vu, Tran Manh;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

Performance Analysis for CO2 System with Sub-cooling loop (과냉 회로를 갖는 이산화탄소 냉동시스템에 대한 성능 해석)

  • Kim, Jin-Man;Ko, Sung-Gyu;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.723-728
    • /
    • 2007
  • In order to evaluate the performance of carbon dioxide cycle with a sub-cooling loop. a simulation system was developed to predict the steady state of $CO_2$ trans-critical cycle. Mathematical models are derived to describe the relationships between the system's coefficient of performance and other operating parameters The mathematical models are based entirely on the basic mass and energy conservation law and thermodynamic and transport properties of carbon dioxide A parametric study has been conducted in order to investigate the effect of sub-cooling loop and various operating conditions on the cycle performance. An optimal mass fraction of a refrigerant flowing through sub-cooling cycle existed for the given evaporating temperature, high pressure and air inlet temperature through gas cooler.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Performance Analysis of Fin-tube Evaporator for Carbon Dioxide (이산화탄소용 핀-관 증발기의 성능해석)

  • 이민규;김영일;장영수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.645-651
    • /
    • 2004
  • Fin-tube evaporator for carbon dioxide has been investigated both by experiment and simulation. Inside refrigerant heat transfer and outside heat and mass transfer of a wet surface heat exchanger were modeled using appropriate correlations. The results estimated by the calculation were in good agreement with the experimental results. The simulation errors were less than 7.9% for estimating capacity, 0.6$^{\circ}C$ for air exit temperature, 1.2% for air exit humidity and 17% for $CO_2$ exit pressure. The simulation program was used to study the effect of air flow direction, number of rows and refrigerant circuits. For a 2-row evaporator, parallel flow showed better performance for low air velocity but for high air velocity, counter-flow was better. Refrigerant circuits, however, showed insignificant effect on the performance.

Measurement and Modeling of Bubble Points for Binary Mixtures of Carbon Dioxide and N,N-Dimethylformamide (이산화탄소와 디메틸포름아마이드 혼합물의 기포점 측정 및 모델링)

  • Jung, Joon-Young;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • The bubble point pressures of binary mixtures of carbon dioxide ($CO_2$) and N,N-dimethylformamide (DMF) were measured by using a high-pressure experimental apparatus equipped with a variable-volume view cell, at various $CO_2$ compositions in the range of temperatures above the critical temperature of $CO_2$ and below the critical temperature of DMF. The experimental bubble point pressure data were correlated with the Peng-Robinson equation of state (PR-EOS) to estimate the corresponding dew point compositions at equilibrium with the bubble point compositions. The experimentally measured bubble point pressures gave good agreement with those calculated by the PR-EOS. The variable-volume view cell equipment was verified to be an easy and quick way to measure the bubble point pressures of high-pressure compressible fluid mixtures.

Measurement of Bubble Points of Dimethyl Carbonate and Carbon Dioxide Mixtures (디메틸카보네이트와 이산화탄소 혼합물의 기포점 측정)

  • Ahn, Joon-Yong;Lee, Byung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.94-98
    • /
    • 2009
  • The bubble point pressures of dimethyl carbonate and carbon dioxide mixtures were measured by using a high-pressure experimental apparatus equipped with a variable-volume view cell, at various $CO_2$ compositions in the range of temperatures above the critical temperature of $CO_2$ and below the critical temperature of dimethyl carbonate. The experimental bubble point pressure data were correlated with the Peng-Robinson equation of state (PR-EOS) to estimate the corresponding dew point compositions at equilibrium with the bubble point compositions. The experimentally measured bubble point pressures gave good agreement with those calculated by the PR-EOS. The variable-volume view cell equipment was verified to be an easy and quick way to measure the bubble point pressures of high-pressure compressible fluid mixtures.

Experimental Studies on Thermal-Fluidic Characteristics of Carbon Dioxide During Heating Process in the Near-Critical Region for Single Channel (단일채널 내 임계영역 이산화탄소 가열과정의 열유동 특성에 관한 실험적 연구)

  • Choi, Hyunwoo;Shin, Jeong-Heon;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.408-418
    • /
    • 2017
  • Supercritical carbon dioxide ($sCO_2$) power system is emerging technology because of its high cycle efficiency and compactness. Meanwhile, PCHE (Printed Circuit Heat Exchanger) is gaining attention in $sCO_2$ power system technology because PCHE with high pressure-resistance and larger heat transfer surface per unit volume is fundamentally needed. Thermo-fluidic characteristics of $sCO_2$ in the micro channel of PCHE should be investigated. In this study, heat transfer characteristics of $sCO_2$ of various inlet conditions and cross-sectional shapes of single micro channel were investigated experimentally. Experiment was conducted at supercritical state of higher than critical temperature and pressure. Test sections were made of copper and hydraulic diameter was 1 mm. Convective heat transfer coefficients were measured according to each interval of the channel and pressure drop was also measured. Convective heat transfer coefficients from experimental data were compared with existing correlation. In this study, using measured data, a new empirical correlation to predict near critical region heat transfer coefficient is developed and suggested. Test results of single channel will be used for design of PCHE.

Separation of $CH_4/CO_2/N_2$ Mixture by Pressure Swing Adsorption (PSA법을 이용하여 $CH_4/CO_2/N_2$ 혼합가스 중에서 메탄의 분리)

  • Cho, Woo-Ram;Jeong, Gu-Hyun;Shin, Young-Hwan;Yoo, Hee-Chan;Na, Byung-Ki
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.389-394
    • /
    • 2011
  • A compact adsorption-based process for removal of carbon dioxide and nitrogen from natural gas has been discussed. Among the adsorption-based processes, especially, the pressure swing adsorption (PSA) process has been a suitable unit operation for the purification and separation of gas because of low operation energy and cost. A step cycle is made up of pressurization, feed, equalization, blowdown and rinse. In this work, the PSA process is composed of zeolite 13X and carbon molecular sieve (CMS) for removal of carbon dioxide and nitrogen from mixed gas containing $CH_4/CO_2/N_2$ (75:21:4 vol%). A CMS selectively removes carbon dioxide and a zeolite 13X separates nitrogen from methane. CMS is investigated experimentally due to the high throughput of the faster diffusing component ($CO_2$). The gas composition of top, bottom and feed tank was measured with the gas chromatography (GC) using TCD detector, helium as carrier gas and packed column for analysis of methane, carbon dioxide, and nitrogen.