• Title/Summary/Keyword: High permeability

Search Result 1,383, Processing Time 0.026 seconds

Effects of HapKok (LI-4) , SamUmGyo (SP-6) Acupuncture on Uterine Motility and Cyclooxygenase-2 Manifestation in Rats (합곡(合谷), 삼음교(三陰交) 자침(刺鍼)이 백서(白鼠) 자궁(子宮) 운동(運動) 및 Cyclooxygenase-2 발현(發現)에 미치는 영향(影響))

  • Lee, Byung-Chul;Lee, Ho-Sub;Kim, Kyung-Sik;Lee, Geon-Mok;Na, Chang-Soo;Kim, Jung-Sang;Hwang, Woo-Jun
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.187-208
    • /
    • 2000
  • By the activation of ovary hormone, many morphological changes occur in the epithelial cell lines and muscle cells in rat uterus. These two cells in uterus are important to the implantation of embryo, maintaining pregnancy and starting parturition. One important change associated with the morphological change of these two cells in uterus is the change on prostaglandin(PG) metabolism. Its presence and synthesis in endometriurn and myometrium in uterus affects estrous cycle and the start of embryo implantation in uterus. It also performs as an important modulator in parturition. So the abnormally weak expression of PG causes difficulty during labor and over-expression causes pre-term labor. PG biosynthesis starts from either free or liberated arachidonic acids from membrane phospholipid by phospholipase. Such arachidonic acids are converted into PG catalyzed by Cyclooxygenase. Under normal physiological condition, Cyclooxygenase-1(COX-1) having 602 units of amino acids controls the synthesis of PG. It acts as a local hormone regulating vasomodulation of blood flow, flexible muscle movement, increasing the blood permeability and contributing the protective role in preserving integrity of the stomach lining and Cyclooxygenase-2 (COX-2) is induced by the inflammation, pregnancy and increased its expression until parturition. Lipid metabolite like PG is located in uterine and expression of COX-2 increased with pregnancy. Increased expression of COX proteins in epithelial cells and myometrial cells are told to increase the muscle contractility in uterus but decreased right after the labor in rat. It is a good sign indicating that COX proteins are deeply related to the start of labor. Currently, Several studies report the use of PG and COX-2 inhibitor as medication for controlled abortion or to prevent pre-term labor but they entail various side-effects. Our study proposed to suggest use of acupuncture as an another mediator to control abortion or pre-term labor without causing unnecessary side-effects by those medicines. Two acupuncture sites, LI-4 & SP-6 were selected due to their known efficacy. From the immunohistochemical staining of COX-2, normal expression of COX-2 protein in nonpregnant SD rat's uterus revealed that COX-2 protein was primarily detected in the lumina epithelial lining and in the epithelial cell lining contacting the stromal cells. High resolution optical microscopic scanning revealed distinguishable staining in the myometrial mucosa. LI-4 acupuncture administered nonpregnant rat's uterus showed strong expression for COX-2 in endometrium contacted with lumina epithelial lining of rat uterus and in myometrial mucosa. Stromal cells showed more staining than untreated nonpregnant rat's uterus and stronger staining in stromal cells contacting myometrial layer compared to untreated nonpregnant rat's uterus. SP-6 acupuncture administered nonpregnant rat's uterus showed weak expression for COX-2 in myometrial layers and stromal cells but no staining was visible in lumina epitheliai and glandular epithelial cells. Few stromal cells and myometrial mucosa were positively stained for COX-2. Pregnant SD rat's uterus was also immunostained for COX-2 expression after 18 days of pregnancy. Unlike to untreated nonpregnant rat's uterus, luminal epithelial cells were not positively stained for COX-2 but stronger staining for COX-2 was revealed in stromal cells. LI-4 acupunctured SD rat's uterus had very strong expression of COX-2 in luminal epithelial lining. Few stromal cells showed stronger positive COX-2 staining and myometrial layers also showed more expression than untreated pregnant rat. SP-6 acupuncture administered pregnant SD rat's uterus showed positive expression of COX-2 in epithelial cells of luminal mucosa layer but weaker than that of LI-4 acupuncture treatment's case. However, strong positive staining was revealed in stromal mucosa and myometrial layers. Virgin SD rat's uterus motility index during LI-4 acupuncture was 66.52 % (Prob〉T = 0.0197) compared to its motility before the acupuncture treatment but the motility index was slighdy elevated up to 79.58 % (Prob〉T = 0.1175) after the acupuncture. During the SP-6 acupuncture treatment for 30 minutes, uterus motility index was 90.52 % (Prob〉T = 0.1832) showing lesser decrement but consequently reached similar motility index decreasal to 79.95 % (Prob〉T = 0.0215) after the acupuncture treatment as LI-4 showed. LI-4 acupuncture tend to be a quick treatment to reducing the uterus motility in a virgin rat but eventually both two acupuncture administration created very similar reduction of uterus motility seeing the index after the both acupunctures. The uterus movement monitored during the LI-4 acupuncture administered for 30 minutes, Pregnant SD rat showed decreased motility down to 77.90 % (Prob〉 T = 0.0076) compared to uterus motility before the acupuncture and it continuously decreased down to 71.81 %(Prob〉T = 0.0214) after the removal of needle. The statistical analysis using paired t-test showed significance difference for both two motility indexs at =0.05. SP-6 acupuncture administered to pregnant SD rat also had similar pattern of decreasing uterus motility index down to 74.70 % (Prob〉T = 0.1730) during the initial 30 minutes acupuncture administration and it was continuously lowered to 71.52 % (Prob〉T = 0.0155) after the acupuncture. The paired t-test resuit for SP-6 suggest prompt response of uterus motility index to the SP-6 acupuncture treatment but consequently reached same level of inducing the motility reduction as LI-4 at =0.05 level.

  • PDF

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF