• Title/Summary/Keyword: High performance liquid chromatography-electrochemical detection

Search Result 17, Processing Time 0.021 seconds

Cimicifugoside Inhibits Catecholamine secretion by blocking Nicotinic Acetylcholine Receptor in Bovine Adrenal Chromaffin cell.

  • Woo, Kyung-Chul;Park, Yong-Su;Suh, Byung-Sun;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.51-51
    • /
    • 2003
  • The medicinal plant Cimicifuga Racemosa (Black cohosh) has been used to treat many kinds of neuronal and menopausal symptoms, such as arthritis, menopausal depression, nerve pain, etc. Here, we examined the effect of Cimicifugoside (CF), one of triterpene glycosides which have been known as pharmacologically active ingredients of C. Racemosa, on nicotinic acetylcholine receptor (nAChR)-mediated catecholamine (CA) secretion in bovine adrenal chromaffin cell. Cimicifugoside inhibited calcium increase induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nAChR agonist with a half maximal inhibitory concentration (IC50) of 18${\pm}$2${\mu}$M. In contrast, cimicifugoside did not affect the calcium increases evoked by high K$\^$+/, veratridine, and bradykinin. The DMPP-induced sodium increase was also inhibited by cimicifugoside with IC50 of 2${\pm}$0.3${\mu}$M, suggesting that the activity of nAChRs is inhibited by cimicifugoside. Cimicifugoside did not effect on the KCl-induced secretion but markedly inhibited the DMPP-induced catecholamine secretion which was monitored by carbon-fiber amperometry in real time, and by high performance liquid chromatography (HPLC) through electrochemical detection. The results suggest that cimicifugoside selectively inhibits nAChR-mediated response in bovine chromaffin cells.

  • PDF

Effect of Do-In (Prunus persica L. BATSCH) Water Extract (PPE) on Concentration of Extracellular Acetylcholine in the Rat Hippocampus

  • Gong Dae-Jong;Kim Geun-Woo;Koo Byung-Soo
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • Objective : This study was designed to examine the effects of orally administered Prunus persica water extract (PPE), which is used as herbal medicine, for treatment of Yu Xue (stasis of blood) and tacrine on the basal concentration of extracellular acetylcholine in the hippocampus of rats. Methods: To investigate the effects of PPE and tacrine on concentration of extracellular acetylcholine in the hippocampus of rats, the microdialysis technique, under the same experimental conditions, was used. And we used male Wistar rats which were 7 weeks of age and 210-290 g. PPE was extracted with boiling water, and the rats were anesthetized with pentobarbital Na. Their skulls were exposed and a hole was drilled for implantation of a microdialysis probe. In order to increase the recovery of acetylcholine, a probe with a long membrane was used. One day after surgery, the microdialysis probe was perfused with Ringer's solution at a flow rate of 1.5 l/min. The acetylcholine concentration in dialysis samples was measured by high-performance liquid chromatography (HPLC) with electrochemical detection. AChE activity was measured using the radiometric method, as described by Sherman. Results : The comparative effects of PPE and tacrine on hippocampal extracellular acetylcholine concentration was that these cholinesterase inhibitors produced dose-dependent increases in the extracellular acetylcholine concentration. And the effect of PPE and tacrine on rat brain AChE activity was that PPE produced maximal inhibition at 1 h after administration, when AChE activity was 44% of the intact level. AChE activity gradually recovered thereafter, and reached 78% of the intact level at 12 h after administration. Conclusion : In this study, PPE has a potent activity and a long-lasting effect on the central cholinergic system, in terms of the basal concentration of extracellular acetylcholine in the hippocampus and the AChE activity in the brain of rats. And oral administration of PPE increased dose-dependently the basal concentration of extracellular acetylcholine in the hippocampus of rats. PPE may be one of the more useful cholinesterase inhibitors for the treatment of Alzheimer's disease.

  • PDF

Characterization of Norepinephrine Release in Rat Posterior Hypothalamus Using in vivo Brain Microdialysis

  • Sung, Ki-Wug;Kim, Seong-Yun;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • In the present study, we used the microdialysis technique combined with high performance liquid chromatography (HPLC) and electrochemical detection to measure the extracellular levels of norepinephrine (NE) in the posterior hypothalamus in vivo, and to examine the effects of various drugs, affecting central noradrenergic transmission, on the extracellular concentration of NE in the posterior hypothalamus. Microdialysis probes were implanted stereotaxically into the posterior hypothalamus (coordinates: posterior 4.3 mm, lateral 0.5 mm, ventral 8 mm, relative to bregma and the brain surface, respectively) of rats, and dialysate collection began 2 hr after the implantation. The baseline level of monoamines in the dialysates were determined to be: NE $0.17{\pm}0.01,$ 3,4-dihydroxyphenylacetic acid (DOPAC) $0.94{\pm}0.07,$ homovanillic acid (HVA) $0.57{\pm}0.05$ pmol/sample (n=8). When the posterior hypothalamus was perfused with 90 mM potassium, maximum 555% increase of NE output was observed. Concomitantly, this treatment significantly decreased the output of DOPAC and HVA by 35% and 28%, respectively. Local application of imipramine $(50\;{\mu}M)$ enhanced the level of NE in the posterior hypothalamus (maximum 200%) compared to preperfusion control values. But, DOPAC and HVA outputs remained unchanged. Pargyline, an irreversible monoamine oxidase inhibitor, i.p. administered at a dose of 75 mg/kg, increased NE output (maximum 165%), while decreased DOPAC and HVA outputs (maximum 13 and 12%, respectively). These results indicate that NE in dialysate from the rat posterior hypothalamus were neuronal origin, and that manipulations which profoundly affected the levels of extracellular neurotransmitter had also effects on metabolite levels.

Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands

  • Hee-Su Kim;Yong-Pil Cheon;Sung-Ho Lee
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 µM NP (CTL vs 100 nM NP, p<0.05; vs 1 µM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 µM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.

The Optimum Conditions for the Simultaneous Determination of Neurotransmitters in Rat Brain Striatum by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐 뇌의 선조체 중 신경전달물질의 동시분석시 최적 조건)

  • Kang, Jong-Seong;Mun, Min-Seon;Shin, Hyung-Seon;Lee, Soon-Chul
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-220
    • /
    • 1995
  • A simple, efficient and sensitive method was described for the simultaneous determination of catecholamine, indoleamine and related metabolites from the homogenates of the rat brain striatum by HPLC-ECD. The optimum mobile phase on a reverse phase $C_{18}$ column was 35mM sodium acetate buffer(included 10mM citric acid, 0.13mM $Na_4EDTA$, 0.58mM SOS, pH3-4):MeOH=85:15. The column temperature was $30^{\circ}C$. Dopamine(DA), 3, 4-dihydroxyphenyl acetic acid(DOPAC), homovanilic acid(HVA), 5-hydroxyindole acetic acid(5-HIAA), serotonin(5-HT) and noradrenaline(NA) could be separated and analysed to very small amount. The detection limits of this method were 2~10pg per injection for all components. The effects of age and sex of rat on the contents of the catecholamines and their metabolites in rat brain striatum were studied. The levels of DA and 5-HT contents of the 7 week old female rats were higher than those of the 7 week old male rats. As the age of rat increases, the contents of DOPAC increased significantly.

  • PDF

Simultaneous determinations of anthracycline antibiotics by high performance liquid chromatography coupled with radial-flow electrochemical cell (고성능 액체 크로마토그래피/방사흐름 전기화학전지를 이용한 안트라사이클린계 항생제의 동시 정량)

  • Cho, Yonghee;Hahn, Younghee
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.308-314
    • /
    • 2007
  • The analytical method of HPLC with the radial-flow electrochemical cell (RFEC) has been developed to determine doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin simultaneously by employing a reversed-phase chromatography. Anthracyclines were detected at -0.74 V vs. a Ag/AgCl (0.01 M NaCl) reference electrode, a potential of diffusion current plateau in the mobile phase. At a $V_f$ of 1.0 mL/min doxorubicin, epirubicin, daunorubicin and idarubicin appeared at a retention time ($t_r$) of 6.4 min, 7.4 min, 12.7 min and 18.4 min, respectively, while at a $V_f$ of 0.6 mL/min, doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin appeared at a $t_r$ of 9.9 min, 11.5 min, 13.5 min, 19.6 min and 28.7 min, respectively. The linearity between each anthracycline injected ($2.40{\times}10^{-7}M{\sim}1.42{\times}10^{-5}M$) and peak area (charge) was excellent with the square of the correlation coefficient ($R^2$) higher than 0.999. The detection limits were $1.0{\times}10^{-8}M{\sim}1.5{\times}10^{-7}M$ for the five anthracyclines. Within-day precision for the five anthracyclines were in reasonable relative standard deviations less than 3 % ($1.00{\times}10^{-6}M{\sim}1.42{\times}10^{-5}M$) except the lower concentrations less than $0.7{\mu}M$. Solid phase extractions of $1.00{\times}10^{-5}M$ epirubicin, $0.48{\times}10^{-5}M$ nogalamycin and $1.52{\times}10^{-5}M$ daunorubicin from human serum with a $C_{18}$ cartridge resulted in 97 %, 100 % and 90 % of recoveries, respectively.

In Vivo Measurement of Extracellular Monoamines and Their Metabolites in the Rat Posterior Hypothalamus Using Microdialysis Technique (미세투석법을 이용하여 흰쥐 후 사상하부에서 세포외액의 모노아민과 대사체들의 생체내 측정)

  • Sung, Ki-Wug;Kim, Seong-Yun;Cho, Young-Jin;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • Catecholamines, serotonin and their metabolites were measured in the posterior hypothalamus of urethane-anesthetized normotensive Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) using brain microdialysis which is a recently developed experimental method to measure the release of neurotransmitters and their metabolites at the localized brain area in vivo. Microdialysis probe was implanted stereotaxically to the rat posterior hypothalamus and perfused by Ringer's solution. Monoamines and their metabolites were quantified by reverse phase high performance liquid chromatography with electrochemical detection. In vitro recovery test of microdialysis showed that there exist inverse relationship between the perfusion flow rate and the relative recovery of neurochemical compounds. The estimated extracellular concentration of dopamine was about 32 nM, of norepinephrine 50 nM, of epinephrine 50 nM, of serotonin 73 nM, of 3, 4-dihydroxyphenylacetic acid (DOPAC) 281 nM, of homovanillic acid (HVA) 181 nM, and of 5-hydroxyindoleacetic acid (5HIAA) 3767 nM in the hypothalamic perfusate of the normotensive rat. There was no difference in the basal level of monoamines between the SHR and the WKY. In contrast, the level of DOPAC, HVA and 5HIAA in SHR was higher than that in the WKY, This study demonstrated that the microdialysis technique should be an applicable tool for in vivo measurement of central neurochemical substances.

  • PDF