• Title/Summary/Keyword: High performance engine

Search Result 1,057, Processing Time 0.03 seconds

An Experimental Study on Reductions of Idle Emissions with the Syngas Assist in an SI Engine (합성가스를 이용한 SI 엔진의 공회전 유해 배기가스 저감에 관한 실험적 연구)

  • Kim, Chang-Gi;Kang, Kern-Young;Song, Chun-Sub;Cho, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.174-182
    • /
    • 2007
  • Fuel reforming technology for the fuel cell vehicles could be applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this study, syngas was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction is varied to 0%, 50%, 100% with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions.

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation (Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

A Study on Characteristics of Performance and Emission by CRDI Engine's Injection Strategy (커먼레일 디젤기관에서 분사전략에 따른 성능 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Ko, Dong-Kyun;Ra, Wan-Yong;Lee, Seang-Wock
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • Recent research has focused on engine combustion technology as well as application of after-treatment in order to comply with emission regulation. However, it is much more efficient way to control emissions from engine itself and furthermore research on engine control will provide the direction of after-treatment technology in future. Furthermore, emission standard regulation for passenger diesel vehicles has been stringent compared to others and nano-particles will be included in EURO6 regulation in Europe and similar emission standard will be introduced in Korea. A 3.0 liter high speed diesel engine equipped with by CRDI system of 160MPa injection pressure, and an intake/exhaust system of V type 6 cylinder turbo-intercooler was applied. The injection duration and injection quantity, pilot injection types which are related to CRDI and air/fuel ratio control applied by EVGT were changed simultaneously. Standard experiment procedure constituted dilution apparatus and CPC system to collect nano-particles and these test results were compared with regulated materials of CO, HC, NOx and investigated their relations and characteristics of nano-particles.

Investigation on the In-Cylinder Flow of 5-Valve Gasoline Engine by Using Two Color PIV Method (이색 PIV 기술을 이용한 5밸브 가솔린엔진 연소실 내의 유동특성 분석)

  • Lee, Gi-Hyeong;U, Yeong-Wan;Park, Sang-Chan;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.238-244
    • /
    • 2002
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These engines have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, in-cylinder flow patterns were visualized with laser sheet method and velocity profiles at near intake valves were inspected by using a two-color PIV. In addition, steady flow tests were performed to quantify tumble ratio of flow-fields generated by a tumble control valve(TCV). Experimental results of steady flow test show that the cure of tumble ratio in intake 3-valve engine farmed as a S shape with valve lift changes. This tendency is different from the one in intake 2-valve engine. Using laser sheet method and two color PIV method, we can find that the intake flow through upper valve increases and the velocity gradient also slightly increases as valve lift increases. From this study, the in-cylinder flow characteristics around intake valves were made clearly.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

An Empirical Study on the Standard Re-establishment of Water Discharge Performance for the Fire Engine Pump (소방차 펌프의 방수성능 기준 재정립을 위한 실증적 연구)

  • Min, Se-Hong;Kwon, Yong-Joon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.85-91
    • /
    • 2012
  • This paper analyzed firefighting officers' use situations such as the use time, maximum working pressure, hose diameter, etc. of fire pumps at fire sites and carried out various performance tests by pressures, hose diameters and quantities of fire pumps based on its results because the waterproof performance criterion for a fire pump installed in a fire engine is different from the operation situations at the site and is not clearly prescribed. As a result of site survey, the site uses a higher pressure than the standard water discharge pressure (0.85 MPa) or the high-pressure water discharge pressure (1.4 MPa) prescribed by the approval Standard of the fire pump performance on fire truck. In addition, as a result of pump performance test, the discharged water flow rate, water discharge pressure, etc. was measured to be very different from the currently prescribed the approval standard depending on the hose diameter and firefighting nozzle, so the result of this study proposes a new standard.

Design and simulation of high performance computer architecture using holographic data storage system for database and multimedia workloads

  • Na, Jong-Whoa;Ryu, Dae-Hyun;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.169-173
    • /
    • 2003
  • The performance of modern mainframe computers keeps increasing due to the advances in the semiconductor technology. However, the quest for the faster computer has never been satisfied. To overcome the discrepancy in the supply and demand, we studied a high performance computer architecture utilizing a three-dimensional Holographic Data Storage Systems (HDSS) as a secondary storage system. The HDSS can achieve a high storage density by utilizing the third dimension. Furthermore, the HDSS can exploit the parallelism by processing the two-dimensional data in a single step. To compare the performance of the HDSS with the conventional hard disk based storage system, we modeled the HDSS using the DiskSim simulation engine and performed the simulation study. Results showed that the HDSS can improve the access time by 1.7 times.

A Study of High Performance Composite Flexible Couplings (고성능 복합재료 가요성 커플링에 관한 연구)

  • Kim P. J.;Park I. K.;Kim K. T.;Woo K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.79-82
    • /
    • 2004
  • The rotor drive system in rotor-craft carries out power transmission from powerplant to rotors and the drive shafts are fallen into misaligned condition by the vibration of engine and shafts and the deformation of supporting structures. The high performance flexible coupling accommodates these misalignments of drive shafts. In this study, we compare the performance of the metalic flexible coupling with the composite flexible coupling through analytic method to develop the high performance flexible coupling used in the rotor drive system of UAV tilt-rotor.

  • PDF

A Study on the Performance Characteristic of Common Rail High Pressure Pump (커먼레일 시스템용 고압펌프의 성능 특성에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.5-10
    • /
    • 2013
  • Diesel engines have the advantages of good fuel efficiency and low emissions. Therefore, car makers have been developed various kinds of diesel engine management system to clean up emissions while improving fuel efficiency. One of them is the common rail system. In the common rail system, diesel fuel is injected into the combustion chamber at ultra high pressures up to 1,800 bar to ensure more complete combustion for cleaner exhaust gas, and highly precise multiple injection reduces NOx emission, combustion noise and vibration. Generally speaking, common rail system consists of booster pump, high pressure pump, common rail, injectors, control valves, and sensors. The high pressure pump receives low pressure fuel from the booster pump and supply high pressure fuel to injectors through the high pressure common injection rail. Therefore, high pressure pump has an important role in common rail system. In this paper, we have investigated the performance of high pressure pump of common rail system.

Evaluation of the Grinding Performance of an Engine Block Honing Stone through Monitoring of Workload and Heat Generation (작업부하 및 발열 모니터링에 의한 엔진블록 호닝스톤 연삭성 평가)

  • Yun, Jang-Woo;Kim, Sang-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Since gasoline engines are based on a combination of a cast iron liner and an aluminum block, which have different thermal properties and stiffnesses, bore shape distortion is likely to occur during honing due to uneven thermal deformation. To solve this problem, many tests and evaluations are needed to support the development of a high-performance honing stone with low heat generation. Moreover, performance evaluation, which depends on inspection and observation after work, often requires much trial and error to optimize tool design, due to challenges in the accurate interpretation of results. This study confirmed that the assessment of grinding capability was clarified by evaluating performance under severe work conditions and by in-situ measurement and recording of current consumption (workload) and heat generation during operation. As a result of using a honing stone with excellent grinding performance in engine block manufacture-in which cylinder bore distortion caused by thermal deformation during manufacture is a problem-a noticeable improvement in the degree of cylindricity was observed.