• Title/Summary/Keyword: High nitrogen concentration

Search Result 1,163, Processing Time 0.036 seconds

A Study on Seasonal Nitrogen Treatment Characteristics according to Design of Constructed Wetland (인공습지의 형태에 따른 계절별 질소처리 특성 연구)

  • Son, Yeong-Kwon;Yoon, Chun-Gyeong;Kim, Jun-Sik;Kim, Hyung-Joong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.94-101
    • /
    • 2012
  • The performance data for eight years from a free-surface-flow constructed wetland system receiving agricultural tailwater were used to analyze denitrification rate and nitrogen treatment characteristics according to season and wetland design. Seasonal difference between growing season (March~November) and winter season (December~February) was shown in the concentration of all nitrogen species. Seasonal nitrogen treatment has similar trend with temperature and measured denitrification rate. The highest denitrification rate was measured in July, but treatment efficiency was most higher in May and June. Nitrogen absorption of vegetation could affect to these wetland performances, therefore dense population of wetland vegetation might be helpful. According to design of wetland, at least 25~50 m of wetland length was needed to decrease effluent T-N concentration to background concentration in growing season. In winter season, wetland needed much longer distance to reduce T-N concentration. Mass removal rate was continuously high through whole year because runoff coefficient was low in winter season. Applicability of constructed wetland was observed for the total maximum daily load that control T-N load.

Accumuation Pattern of Nitrate-Nitrogen in Sorghum And Maize Plants as Affected by Morphological Characteristics And Environmental Temperature (Sorghum 및 옥수수의 형태적 특성과 재배온도가 Nitrate-Nitrogen 축적에 미치는 영향)

  • 김정갑
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.146-152
    • /
    • 1987
  • Sorghum cv. Pioneer 93 1, sorghum-sudangrass hybrid cv. Sioux and maize plant cv. Blizzard were assayed for toxic concentrations of nitrate-nitrogen ($NO_3$-N) and their relationship to morphological characteristics and environmental temperature in a field and phytotron trial. In the phytotron, sorghum and maize plants ranging from emergence to heading stage, were grown under different day/night temperatures of 30125, 25/20,28/18 and 1818 degree C. Nitrate-nitrogen in sorghum and maize plants was accumulated mainly in stems. Therefore nitrate concentration in the young plants was increased as development of stalks advanced and was highest at the stage of 3-4 leaves, when the plants had a leaf weight ratio 0.78-0.80 g/g plant weight. However, nitrate concentrations of the plant decreased as morphological development progressed, especially from the stage of growing point differentiation. Correlation coefficients showed a positive correlation of nitrate concentration with leaf weight ratio, leaf area ratio and specific leaf area, while plant height, dry matter percentage and absolute growth rate showed a negative association with TEX>$NO_3$-N ($P{\le}0.1$%). Cyanogenic glycosides, total nitrogen and crude protein were close associated with nitrate accumulation, and positively significant ($P{\le}0.1$%). High temperature over 30/25^{\circ}C.$ for 3 weeks increased N-uptake and dry matter accumulation, but reduced nitrate concentration. Under cold temperature below 18/8^{\circ}C.$ concentration of nitrate-N was increased in spite of its limited nitrogen uptake and plant growth.

  • PDF

Effects of phosphorus concentration and nitrogen sources on photoautotrophic microalgae Scenedesmus dimorphus applied wastewater treatment (인 농도 및 질소원이 광합성 미세조류인 Scenedesmus dimorphus를 이용한 하수고도처리에 미치는 영향)

  • Kim, Tae-Hyeong;Cho, Yong-Beom;Park, Jeong-Eun;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.325-329
    • /
    • 2013
  • A result of estimating the effects of initial phosphorus concentration and nitrogen sources on removal of nitrogen and phosphorus in wastewater treatment using Scenedesmus dimorphus shows that there was no difference in microalgae growth amount and nitrogen removal amount by phosphorus concentration(5 ~ 60 mg/L). On the other hand, as initial phosphorus concentration increased, phosphorus removal amount was increased by luxury uptake of microalgae. Scenedesmus dimorphus preferred to ammonia when ammonia(40 mg/L) and nitrate(40 mg/L) are simultaneously presented and nitrogen removal rate of ammonia was high at approximately 20 mg/L/day.

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.

Effects of Seeding Microorganisms, Hydrazine, and Nitrite Concentration on the Anammox Activity (혐기성 암모늄 산화균의 활성에 대한 식종미생물, 히드라진 및 아질산성 질소 농도의 영향)

  • Jung, Jin-Young;Kang, Shin-Hyun;Kim, Young-O;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.477-483
    • /
    • 2005
  • Anammox (Anaerobic Ammonium Oxidation) bacteria is recently discovered microorganism which can oxidize ammonium to nitrogen gas in the presence of nitrite under anaerobic conditions. The anammox process can save an energy for nitrification and need not require a carbon source for denitrification, however, the start-up periods takes a long time more than several months due to the long doubling time (approximately 11 days). In order to find the effects of seeding microorganisms, hydrazine, and nitrite concentration on the enhancement of the anammox activity, five kinds of microorganisms were selected. Among the several kinds of seeding microorganisms, the granule from acclimated microorganisms treating high concentration of ammonia nitrogen (A-1) and sludge from piggery wastewater treatment plant (A-2) were found to have a high anammox activity. In the case of A-1, the maximum nitrogen conversion rate represented 0.4 mg N/L-hr, and the amount of nitrite utilization was high compared to those of other seeding microorganisms. The A-4 represented a higher nitrogen conversion rate to 0.7 mg N/L-hr although the ammonium concentration in the serum bottle was high as 200 mg/L. Meanwhile, the anaerobic granule from UASB reactor treating distillery wastewater showed a low anammox activity due to the denitrification by the remained carbon sources in the granule. Hydrazine, intermediate product in anammox reaction, enhanced the anammox activity by representing 1.4 times of nitrogen gas was produced in the test bottle than that of control, when 0.4 mM of $N_2H_4$ was added to serum bottle which contains 5 mM of nitrite. The high concentration of nitrite (10 mM) resulted in the decrease of the anammox activity by showing lower production of nitrogen gas compared to that of 5 mM addition of nitrite concentration. As a result of FISH (Florescence In-Situ Hybridization) experiment, the Amx820 probe showed a more than 13% of anammox bacteria in a granule (A-1).

A Study on Characteristic of NO Reduction by High Level O2Gas in Selective Non-Catalystic Reaction (High Level O2배가스중 NO 저감에 대한 선택적비촉매환원 반응특성에 관한 연구)

  • 이강우;정종현;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Selective catalytic reduction and selective non-catalytic reduction processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. Especially, the selective non-catalytic reduction process can be operated more economical and designed more simply than the selective catalytic reduction. For this reason, many researchers carried out to increase the removal efficiency of nitrogen oxidants in the condition of low oxygen concentration by using the selective non-catalytic reduction process. However, this study was flue gas contained high oxygen concentration of 20(v/v%) with ammonia as a reducing agent. Moreover, it carried out experiment with many factors that are reaction temperature, retention time, initial NO concentration, NSR(normalized stoichiometric ratio). It was determined optimal operating conditions to improve NO removal efficiency with SNCR process. The De-NOx efficiency was increased with NSR, initial NO concentration and retention time increasement. This study has NO removal efficiency over 80% in the high oxygen concentration as well as low oxygen concentration. The injection of reducing agent may be considered for SNCR process and facility operation in 850$\^{C}$ of optimal condition.

Candida magnoliae SR101에 의한 Erythritol의 생산에서 산업용 질소원의 선정 및 최척화

  • Park, Seon-Yeong;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.351-354
    • /
    • 2001
  • In this experiment, we tested various nitrogen sources and then culture condition was optimized for industrial applications. The batch culture of Candida magnoliae SR101 grown in a defined medium supplemented with light steep water (LSW) as a sole nitrogen source showed a relatively high yield of erythritol production (53%), which was slightly higher than that using yeast extract as a nitrogen source, while the productivity and cell mass were maintained at similar levels. For the optimization of culture condition, the batch culture was performed. When the concentration of LSW was 65 mL/L in the defined medium containing 250 g/L of glucose, the concentration, yield and productivity of erythritol were 110 g/L, 44%, and 0.66 g/L-hr, respectively. The high yield and comparable productivity obtained with a cheap nitrogen source could be expected as a basis for the mass production of erythritol in the industrial scale.

  • PDF

Biodegradation Characteristics of Nitrogen-containing Aromatic Compounds in Activated Sludge (활성슬러지를 이용한 질소방향족화합물의 생물학적 분해 특성)

  • Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.222-228
    • /
    • 2010
  • Biological degradation of nitrogen-containing aromatic compounds was investigated in activated sludge previously adapted to mineralize low concentrations of nitrogen-containing aromatic compounds. Normally, the time required for 95% degradation of 10 mg/l dinitrophenol (DNP) under aerobic conditions was less than 4 hours without any lag, and with mixed liquor suspended solid (MLSS) levels from 600 to 1,000 mg/l. However, when the initial DNP concentration was increased to 75 mg/l, lags and even complete inhibition of DNP degradation were observed. The length of the lag was found to increase proportionally with decreasing MLSS levels. When dilute activated sludge was incubated for extended periods (192 hours), degradation of 75 mg/l DNP did eventually occur after lag periods of 37 to 144 hours, depending on the MLSS concentration. DNP was degradable in high concentrations if MLSS concentrations were sufficiently high to allow growth of bacteria resistant to the toxic effects of DNP.

Growth Characteristics and Removal Effect of Nitrogen and Phosphoric Acid of Iris pseudoacorus at Waterway Soils of Mangyeong River (만경강 하천토양에서 노랑꽃창포의 생장특성과 질소·인 제거효과)

  • Seo, Byungsoo;Choi, Sumin;Park, Woojin;Park, Chongmin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.57-65
    • /
    • 2004
  • This study was carried out to measure the growth and photosynthesis of Iris pseudoacorus, the reduction rate of nitrogen(T-N) and phosphoric acid($P_2O_5$) from soils, and the increase rate of two substance into plants which cultivated at waterway soils of different concentration of two substance. The results are summarized as follows; 1. The contents of nitrogen and phosphoric acid at waterway soils of Mangyeong river showed the highest level in the around Samrye railway bridge where was located in the downstream and sewage of stock raising flowed in 2. The Iris pseudoacorus which cultivated at waterway soils showed the leaf and root growth of 43~50 and 9~13cm, respectively. And the growth was higher in the waterway soils contained high level of nitrogen The rate of photosynthesis was $3.5-5.9{\mu}mol\;m^{-2}s^{-1}$ ranges and this rate increased from the end of June to August and then decreased. The rate of photosynthesis was higher in waterway soils contained high nitrogen regardless of seasons. 4. The Iris pseudoacorus removed nitrogen and phosphoric acid from waterway soils about 19~21% and 13~15%, respectively. The Iris pseudoacorus was effective to remove nitrogen more than phosphoric acid. And the waterway soil which included high concentration of two substance showed highly removal 5. The results of Iris pseudoacorus vegetation in the waterway soils showed that nitrogen and phosphoric acid of inside plant increased with 0.2-1.0% and 0.01-0.10% ranges, respectively. The contents of nitrogen and phosphoric acid in plants were increase in the soils of higher contents of nitrogen and phosphoric acid, and the rate of increase of nitrogen and phosphoric acid was higher at roots than leaves.

Effects of Fertilizer on Growth, Carbon and Nitrogen Responses of Foliage in a Red Pine Stand

  • Kim, Choonsig;Ju, Nam-Gyu;Lee, Hye-Yeon;Lee, Kwang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This study was to examine growth, carbon and nitrogen responses in foliage following forest fertilization in a red pine stand. Two types of fertilizer (N:P:K=113:150:37 kg $ha^{-1}$; P:K=150:37 kg $ha^{-1}$) were applied on late April 2011. Growth, carbon and nitrogen responses of foliage were monitored 3 times (July, September, November) after fertilization. Morphological growth responses (dry mass, leaf area, specific leaf area) with foliage age were not significantly (P > 0.05) affected by fertilizer application, while needle dry mass and leaf area of July were significantly lower in current-year-old than in one-year-old or two-year-old needles of September or November. Carbon concentration and content in foliage was little affected by fertilizer application compared with sampling month or needle age, while the NPK fertilizer produced high nitrogen concentration and content of foliage. The results indicate that nitrogen concentration and content in foliage may serve as an indicator of the nitrogen status by fertilization in a red pine stand.