• Title/Summary/Keyword: High manganese and aluminum alloyed steels

Search Result 1, Processing Time 0.014 seconds

A Brief Review of κ-Carbide in Fe-Mn-Al-C Model Alloys

  • Seol, Jae Bok
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.117-121
    • /
    • 2018
  • The multiple length scale analysis of previously designed Fe-Mn-Al-C based low-density model alloys reveals the difference in ordered ${\kappa}-carbide$, $(Fe,Mn)_3AlC_x$, between Fe-25Mn-16Al-5.2C (at%) alloy and Fe-3Mn-10Al-1.2C (at%) alloy. For the former alloy composition consisting of fully austenite grains, ${\kappa}-carbide$ showed majorly cuboidal and minorly pancake morphology and its chemical composition was not changed through aging for 24 h and 168 h at $600^{\circ}C$. Meanwhile, for the isothermally annealed ferritic alloy system for 1 hr at 500 and $600^{\circ}C$, the dramatic change in the chemical composition of needle-shape ${\kappa}-carbide$, $(Fe,Mn)_3(Fe,Al)C_x$, was found. Here we address that the compositional fluctuations in the vicinity of the carbides are significantly controlled by abutting phase, either austenite or ferrite. Namely, the cooperative ordering of carbon and Al is an important factor contributing to carbide formation in the high-Mn and high-Al alloyed austenitic steel, while the carbon and Mn for the low-Mn and high Al alloyed ferritic steel.