• Title/Summary/Keyword: High heat emission

Search Result 303, Processing Time 0.024 seconds

Preparation of Bucky Paper using Single-walled Carbon Nanotubes Purified through Surface Functionalization and Investigation of Their Field Emission Characteristics (기능화에 의한 단일벽 탄소나노튜브 정제 및 페이퍼 제조와 전계방출 특성 연구)

  • Goak, Jeung-Choon;Lee, Seung-Hwan;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • Single-walled carbon nanotubes (SWCNTs) were currently produced together with some contaminants such as a metallic catalyst, amorphous carbon, and graphitic nanoparticles, which should be sometimes purified for their applications. This study aimed to develop efficient, scalable purification processes but less harmful to SWCNTs. We designed three-step purification processes: acidic treatment, surface functionalization and soxhlet extraction, and heat treatment. During the soxhlet extraction using tetrahydrofuran, specifically, carbon impurities could be easily expelled through a glass thimble filter without any significant loss of CNTs. Finally, SWCNTs were left as a bulky paper on the filter through membrane filtration. Vertically aligned SWCNTs on one side of bulky paper were well developed in a speparation from the filter paper, which were formed by being sucked through the filter pores during the pressurized filtration. The bucky paper showed a very high peak current density of field emission up to $200\;mA/cm^2$ and uniform field emission images on phosphor, which seems very promising to be applied to vacuum microelectronics such as microwave power amplifiers and x-ray sources.

A Optimization of the ORC for Ship's Power Generation System (해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.595-602
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC (Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation was performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. Various fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared. Finally, 2,400kW output power is obtained by system optimization of the preheater and reheater utilizing waste heat form sea water cooling system.

Advances on heat pump applications for electric vehicles

  • Bayram, Halil;Sevilgen, Gokhan;Kilic, Muhsin
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.79-104
    • /
    • 2018
  • A detailed literature review is presented for the applications of the heat pump technologies on the electric vehicles Heating, Ventilation and Air Conditioning (HVAC) system. Due to legal regulations, automotive manufacturers have to produce more efficient and low carbon emission vehicles. Electric vehicles can be provided these requirements but the battery technologies and energy managements systems are still developing considering battery life and vehicle range. On the other hand, energy consumption for HVAC units has an important role on the energy management of these vehicles. Moreover, the energy requirement of HVAC processes for different environmental conditions are significantly affect the total energy consumption of these vehicles. For the heating process, the coolant of internal combustion (IC) engine can be utilized but in electric vehicles, we have not got any adequate waste heat source for this process. The heat pump technology is one of the alternative choices for the industry due to having high coefficient of performance (COP), but these systems have some disadvantages which can be improved with the other technologies. In this study, a literature review is performed considering alternative refrigerants, performance characteristics of different heat pump systems for electric vehicles and thermal management systems of electric vehicles.

A Study on the Acoustic Emission Characteristics of Weld Heat Affected Zone in SWS 490A Steel(1) (SWS 490A 강의 용접 열영향부 음향방출 특성 에 대한 연구(1))

  • 이장규;우창기;박성완;윤종희;조진호;김봉각;구영덕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • The object of this study is to investigate the effect of compounded welding through the AE(Acoustic Emission) characteristics for weld HAZ(Heat Affected Zone) under the static tensile test. This study was carried out an SWS 490A, high tension steel for electric shield metal arc welding(SMAW), $CO_2$ gas arc welding and TIG welding. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. The accumulated AE event curve of HAZ definitely have the point of inflection subject to tensile test. The results of the tensile test of HAZ come out electric shield arc welding >$CO_2$ gas arc welding>TIG welding in case of single welding, but generally the tensile test of HAZ come out electric shield arc welding> TIG welding > $CO_2$ gas arc welding. These history plots give us useful and powerful information to analyze the results of material evaluation testing.

Far Infrared Emissivity of Wood Material - Comparing the Three Heat Transfer Modes of Wood Box and Aluminum Box

  • Lee, Hwa-Hyoung;Bender, Donald A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.440-450
    • /
    • 2009
  • In case of wood flooring, the high emissivity would be one of the most important properties especially as the cover material of underfloor heating system. The FIR (Far Infrared) materials such as wood emit FIR energy by heating, which has been used as the medical therapy such as dry sauna. This research investigated the emissivity and the emission power of wood composites by comparing the amount of the three heat transfer modes transferred by infrared radiation which came from the increased temperature of the bottom board of the plywood box by the heater. The results showed the value of radiation mode was the highest mode for the plywood box, and the convection mode was the main mode for the aluminum box. The rate of convection was 81.8% in the aluminum box and 48.2% in the plywood box, respectively. In case of the rate of radiation, the aluminum box showed only 15.4% and the plywood box showed 51%. The emissivity and the emission power of birch plywood showed the same values as those of wood. The amount of energy required for the temperature rising of water within vial in the aluminum box and in the plywood box were 3.32 kJ and 6.70 kJ respectively, which showed that the vial temperature of the plywood box was two times higher than that of the aluminum box.

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF

Structure Analysis on Thermal Deformation of Super Low Temperature Liquefied Gas One-module Vaporizer (초저온 액화가스 단일 모듈 기화기의 열변형 구조해석)

  • Park, G.T.;Lee, Y.H.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.22-28
    • /
    • 2007
  • Liquefied gas vaporizer is a machine to vaporize liquefied gas such as liquid nitrogen($LN_{2}$), liquefied natural gas(LNG), liquid oxygen($LO_{2}$) etc. For the air type vaporizer, the frozen dew is created by temperature drop (below 273 K) on vaporizer surface. The layer of ice make a contractions on vaporizer. The structure analysis on the heat transfer was studied to see the effect of geometric parameters of the vaporizer, which are length 1000 mm of various type vaporizer. Structure analysis result such as temperature variation, thermal stress and thermal strain have high efficiency of heat emission as increase of thermal conductivity. As the result, Frist, With-fin model shows high temperature distribution better than without-fin on the temperature analysis. Second, Without-fin model shows double contractions better then with-fin model under the super low temperature load on the thermal strain analysis. Third, Vaporizer fin can be apply not only heat exchange but also a stiffener of structure. Finally, we confirm that All model vaporizer can be stand for sudden load change because of compressive yield stress shows within 280 MPa on thermal stress analysis.

  • PDF

Study on Friction Welding Properties and Creep Life Prediction for Heat Resisting Steels of SUH3 and SUH35 - Creep Properties and ISM (내열강재 SUH3과 SUH35 마찰용접재의 ISM에 의한 크리프 수명예측에 관한 연구)

  • 양형태;오세규;김헌경;이연탁;공유식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.101-108
    • /
    • 2000
  • In this paper, the real-time prediction of high temperature creep life was carried out for the friction welded joints of dissimilar heat resisting steels(SUH3-SUH35). Various life prediction methods such as LMP(Larson-Miller Parameter) and ISM(initial strain method) were applied : The creep behaviors of those steels and the welds under static load were examined by ISM combined with LMP at 500, 600 and $700^{\circ}C$, and the relationship between these two methods was investigated. A real-time creep life( $t_{r}$ , hr) prediction equation by initial strain($\varepsilon$$_{0}$ , %) under any creep stress ($\sigma$, MPa) at any high temperature(T, K) was developed as follows : $t_{r}$ =$\alpha$$\varepsilon$$_{0}$ $^{\beta}$$\sigma$$^{1}$ where, (equation omitted) for SUH3-SUH35 friction weld of =16mm and =20mm, respectively.

  • PDF

Study on Creep Life Prediction by Initial Strain Method for Friction Welded Joints of Heat Resisting Steels (내열강 마찰용접재의 ISM에 의한 크리프 수명예측에 관한 연구)

  • 김헌경;김일석;이연탁;공유식;오세규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.46-52
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep life was carried out for the friction welded joints of dissimilar heat resisting steels (SUH3-SUH35). various life prediction method such as LMP (Larson_miller Parameter) and ISM (initial strain method) were applied. The creep behaviors of those steels and the welds under static load were examined by ISM combined with LMP at 500, 600 and $700^{\circ}C$, and the relationship between these two methods was investigated. A real-time creep lie (tr, hr) prediction equation by initial strain (${\varepsilon}_0$, %) under any creep stress ($\sigma$, MPa) at any high temperature (T, K) was developed as follows: $t_r={\alpha}{\varepsilon}_0^{\beta}{\sigma}^{-1}$ where, ${\phi}=16: {\alpha}=10^{51.412-0.104T+5.375{\times}10^5T^2}$, $ {\beta}=-83.989+0.180T-9.957{\times}10^{-5}T^2,{\phi}=20:$ ${\alpha}=10^{69.910-0.146T+7.744{\times}10^{-5}T^2$, ${\beta}=-51.442+0.105T-5.595{\times}10^{-5}T^2$ for SUH3-SUH35 friction weld of =16mm and 20mm, respectively.

  • PDF