• 제목/요약/키워드: High frequency link inverter

검색결과 92건 처리시간 0.024초

Current-Source Pulse Density Modulated Parallel Resonant Inverter with A Single Resonant Snubber and Its Unique Application

  • Wang Y.X.;Koudriavtsev O.;Konishi Y.;Okuno A.;Nakaoka M.;Lee H.W.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.261-265
    • /
    • 2001
  • In this paper, a current-source type parallel indudor compensated load resonant high-frequency soft switching inverter using IGBTs for driving the newly-produced silent discharge type ozone generating tube and excimer lamp for UV generation which incorporate a single switched capacitor resonant snubber between the port in DC busline side is presented, together with its pulse modulated unique output power regulation characteristics.

  • PDF

IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발 (Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device)

  • 노애숙;김태윤
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.233-240
    • /
    • 2005
  • 본 논문은 현재까지 전적으로 수입에 의존하던 국내 교류 전동차용 추진제어장치(Converter/Inverter)를 대용량 IPM 스위칭 소자를 적용하여 개발된 시스템을 제안한다. 컨버터의 용량을 향상시키기 위해 2대의 PWM 컨버터를 병렬 운전하고 병렬 운전 시 각각의 컨버터 스위칭 각을 다르게 제어하여 고조파 함유를 줄였으며 DC-Link 단의 Beatless 제어를 수행하였다. VVVF 인버터 제어의 경우, 저속의 운전영역에서는 순시 토크 제어가 가능한 백터제어를 적용하고, 고속 운전 영역에서는 슬립 주파수제어를 적용하는 백터 제어와 스칼라 제어의 병용 제어기법을 제시하였다. 제시된 추진제어장치는 4대의 210kW 유도전동기를 이용하여 철도차량용 추진제어장치에 적용되는 관련 규격의 각종 시험을 통해 그 성능을 검증하였다.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

태양광 인버터의 노치 필터 최적 설계 (Optimal Design of Notch Filter in Photovoltaic Inverter)

  • 김용래;허철영;이영권;최익;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.81-92
    • /
    • 2019
  • When Photovoltaic inverter is connected to grid and used as PVPCS (Photovoltaic Power Conditioning System), 120 Hz AC ripple occurs at the dc-link capacitor voltage. This AC ripple reduces the efficiency of PVPCS and shortens the lifetime of the capacitor. In this paper, we design a notch filter to remove AC ripple. As a result, the AC voltage ripple was removed from the dc link and the THD of the PVPCS output current with the notch filter was lowered. This notch filter is determined by the damping coefficient, the bandwidth coefficient, and the switching frequency. Among these, the switching frequency determines the switching loss and the size of the LC filter, and the PVPCS with the high switching frequency has a greater efficiency loss due to the switching loss than the efficiency improvement by the notch filter. Therefore, it is important to set the optimum switching frequency in the PVPCS with the notch filter applied. In this paper, THD and switching loss of PVPCS output current with notch filter are calculated through simulation, and cost function to calculate optimum switching frequency through data is proposed.

새로운 액티브 보조 공진 DC 링크 스너버를 이용한 3상 전압형 소프트 스위칭 인버터의 특성 (Characteristic of Three-Phase Voltage Type Soft-Switching Inverter using the Novel Active Auxiliary Resonant DC Link Snubber)

  • 성치호;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.114-121
    • /
    • 2016
  • This paper is Instant space vector PWM(Pulse Width Modulation)power conversion devices in switching power semiconductors from my generation to losses and switching when the voltage surge and current surge of electronic noise(EMI: Electro Magnetic Interference / RFI: Radio Frequency Interference)to effectively minimize the power soft-switching power conversion circuit topologies of auxiliary resonant DC tank for the purpose of high performance realization of the electric power conversion system by the high-speed switching of a semiconductor device(AQRDCT simultaneously : an active auxiliary resonance using auxiliary Quasi-resonant DC tank)DC link snubber switch has adopted a three-phase voltage inverter. AQRDCL proposed in this paper can reduce the effective and current peak stress of the power semiconductors of the auxiliary resonant snubber circuit compared to the conventional active-resonant DC link snubber, it is not necessary to install the clamp switch of the auxiliary resonant DC link, DC the peak current and power loss of the bus line can be reduced.

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.

보조권선을 사용한 자동차 헤드라이트용 고압방전 등 안정기 (Automotive HID ballast using auxiliary windings)

  • 이규찬;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.595-598
    • /
    • 1999
  • A new of the automotive High Intensity Discharge(HID) lamp ballast systems is proposed. Proposed scheme is consisted of the high frequency DC-DC converter and low frequency DC-AC inverter as same as conventional HID ballast system. But this system separates ignition voltage from dc link voltage, which results to used the lower voltage rating power devices for HID lamp ballast system compared with conventional system. As a result, proposed system has a lower cost and higher efficiency.

  • PDF

DC-link Capacitor필름 형상에 따른 Joule-heat특성 분석 (Analysis of Joule-heat Characteristics according to the DC-link Capacitor Film Geometrics)

  • 전용원;김영신;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.42-48
    • /
    • 2020
  • As global warming accelerates, eco-friendly electric cars are being developed to reduce carbon dioxide emissions, and power conversion inverters are used to drive motors. Among inverter components, DC-link capacitor is heated by high current usage, which causes problems such as performance and life-saving of inverter. Although metal cases with good thermal performance have been used to solve this problem, it is difficult to apply them in practice due to insulation problems with other parts. In this paper, the Heat-Generation influence factor of DC-link capacitor is analyzed. Variables on heat-generation are set at 3 levels for film width, inductance, and film thickness. Box-Behnken to 13 tests using the design and minimal deviations, e.g. through the experiment three times by each level. The surface of the film k type by attaching the sensor current is measured temperature. Capacitance was set to a minimum level of 200 ㎌ and had a frequency of 16 kHz with Worst case, ambient temperature of 85℃ and a ripple current of 50 Ams was applied. The temperature at the measurement point was collected in the data logger after sampling at 1 minute intervals for 2 hours after saturation with the ambient temperature. This experiment confirmed that setup factors are correlated with heat-generation.

PWAM 방식을 이용한 공조시스템용 인버터의 THD 저감 방법 (PWAM Based THD Reduction of Inverter for Air-Conditioning Blower)

  • 임승범;이윤하;전찬용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.97-98
    • /
    • 2011
  • The HVAC(Heating Ventilation and Air conditioning) system is controlled by two ways, one is ON/OFF control and the other is PWM inverter with V/F. Control of blower with the use of PWM inverter has quite some benefits such as the capability of changing speed, high efficiency and reduced noise level compared with ON/OFF control. But if blower is operated at low speed, high THD generated by decrease of ma, and output voltage lowered in proportion to frequency. To solve these problems, filter should be installed at the output stage of inverter, which can decrease THD but has problems such as increase of volume size and additional braking resistance. This paper proposes the PWAM method which can reduce THD instead of installing the filter at the output stage of inverter. The proposed PWAM method is an inverter modulation method that fixes the modulation index of inverter to reduce THD by varying DC link voltage of inverter unlike conventional PWM method. Finally, the validity of proposed PWAM methods verified by experiments.

  • PDF