• Title/Summary/Keyword: High frequency cavity

Search Result 172, Processing Time 0.03 seconds

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

Design of a Low-Profile, High-Gain Fabry-Perot Cavity Antenna for Ku-Band Applications

  • Nguyen, Truong Khang;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • A Fabry-Perot resonator cavity antenna for Ku-band application is presented in this paper. The Fabry-Perot cavity is formed by a ground plane and a frequency selective surface (FSS) made of a circular hole array. The cavity resonance is excited by a single-feed microstrip patch located inside the cavity. The measured results show that the proposed antenna has an impedance bandwidth of approximately 13% ($VSWR{\leq}2$) and a 3-dB gain bandwidth of approximately 7%. The antenna produces a maximum gain of 18.5 dBi and good radiation patterns over the entire 3-dB gain bandwidth. The antenna's very thin profile, high directivity, and single excitation feed make it promising for use in wireless and satellite communication applications in a Ku-band frequency.

Frequency Analysis of the Sweepback Cavity in the Scramjet Engine (스크램제트 엔진 내 후퇴각 공동의 주파수 특성 분석)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.293-296
    • /
    • 2007
  • Using the T3 free-piston shock tunnel in ANU, the cavity frequency and flow characteristics of no mass-injection, inclined mass-injection before the cavity, parallel or reverse mass-injection in the cavity are investigated in the case of Mach 3.7 inflow condition. No mass-injection doesn't have the harmonic frequencies but has high amplitude of pressure spectrum at 10 kHz. Inclined mass-injection attenuates the cavity flow fluctuation as disturbing the shear layer reflection at the trailing edge. Parallel mass-injection flow reflects at the trailing edge of the cavity directly hence, increases the cavity flow fluctuation at high injection pressure.

  • PDF

A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity (공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구)

  • 김찬묵;김도연;방극호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

Real-time Subtle Vibration Sensing of Optical Fiber Cable based on External-cavity Frequency-swept Laser (외부공진형 광주파수가변 레이저를 이용한 실시간 광섬유 케이블의 미세 진동 측정 연구)

  • Jang, Hansol;Kim, Chang-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.943-948
    • /
    • 2020
  • In this paper, we developed a fiber optic interferometer system based on frequency-swept laser. This frequency-swept laser with an external-cavity structure can generate a high coherent light with a linewidth of 132 kHz at 1552 nm. It also shows a superior swept linearity of R2 = 0.99995 under repetition rate of 200 kHz due to absence of mechanical moving parts in the laser cavity. By using a piezoelectric fiber optic stretcher, various vibration experiments were implemented, such as 0.5 to 2.0 kHz vibration signals with intervals of 0.5 kHz, with a sampling rate of 7 kHz. Real-time peak tracking can be successfully recovered according to the applied vibration frequency with high linearity of R2 = 0.99983.

A study on the noise reduction of practical duct system with the air cavity (공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구)

  • Kim, Chan-Mook;Lee, Doo-Ho;Bahng, Keuk-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

Design Method of a Circularly-Polarized Antenna Using Fabry-Perot Cavity Structure

  • Ju, Jeong-Ho;Kim, Dong-Ho;Lee, Wang-Joo;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • A Fabry-Perot cavity (FPC) antenna producing both high-gain and circularly-polarized (CP) behavior is proposed. To increase antenna gain and obtain CP characteristics, a superstrate composed of square patches with a pair of truncated corners is placed above the linearly polarized patch antenna with an approximately half-wavelength distance from the ground plane at the operating frequency. The proposed antenna has the advantages of high gain, a simple design, and an excellent boresight axial ratio over the operating frequency bandwidth. Moreover, used in an FPC antenna, the proposed superstrate converts a linear polarization produced by a patch antenna into a circular polarization. In addition, the cavity antenna produces left-hand circular-polarization and right-hand circular-polarization when a patch antenna inside the cavity generates x-direction and y-direction polarization, respectively. The measured and simulated results verify the performance of the antenna.

A Study on the Phase Noise Improvement of Oscillator using Dielectric-rod loaded Cavity Resonators with HIS End-plates (고온초전도체와 유전체 삽입 공동 공진기를 이용한 발진기의 위상잡음 개선에 관한 연구)

  • Lee, Won-Hui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.174-177
    • /
    • 2009
  • In this paper, an oscillator using dielectric-rod loaded cavity resonators with HTS(High Temperature Superconductor) end-plates was presented. It was operated at X-band. A two port cavity resonator was incorporated into a basic feedback loop oscillator configuration. A rutile loaded cavity resonator with HTS thin film end-plates was used to provide the quality factor between $10^4$ and $10^6$. A parallel feedback oscillator was constructed with a dielectric loaded cavity resonator, an amplifier, and a directional coupler. At 300 K, the experimental results showed the phase noise of -108 dBc/Hz at a 100 kHz offset frequency. At 26 K, the results was -118.8 dBc/Hz at same offset frequency.

Numerical Investigation of the Cover-Plates Effects on the Rectangular Open Cavity (직사격형 공동에서 덮개 효과에 대한 수치적 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.457-464
    • /
    • 2001
  • The aeroacoustic phenomena in the simple rectangular open cavity are well published by many researchers. But the geometry shapes of aircraft landing gear wells, weapon bays, etc. are more complicate than that of the simple retangular cavity. They are more similar to the cavity having cover-plates at adges, or Helmholtz resonator. Therefore, the effects of cover-plates existing on edges of rectangular open cavity are numerically investigated in this paper. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions and buffer zone techniques are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. Results show that the cover-plates existing on edges of cavity reduce the noise convected from cavity, make the frequency of noise become higher, and change the directivity pattern. So these results can be used in the design of a low noise cavity.

  • PDF

Design of Cavity-Backed High Gain Dual Band Microstrip Antenna Using Frequency Selective Surface (FSS 구조를 이용한 Cavity-Backed 고이득 이중 대역 마이크로스트립 안테나 설계)

  • Kim, Byoung-Chul;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.152-163
    • /
    • 2010
  • In this paper, a cavity-backed high gain dual band microstrip antenna with Frequency Selective Surface space(FSS) for WLAN is proposed. The proposed antenna that operates in IEEE 802.11a/b bands with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38. The size of the antenna is $71.5{\times}42.0{\times}6.6\;mm^3$, and the FSS size is $120.0{\times}120.02\;mm^3$. The ground plane size including cavity is $150.0{\times}145.0\;mm^3$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.369~2.517 GHz and 5.608~5.833 GHz for VSWR<2. The gains are 11.23 dBi and 12.60 dBi, respectively, for the lower and upper bands.