• Title/Summary/Keyword: High fatigue strength

Search Result 707, Processing Time 0.025 seconds

A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete (하이브리드섬유보강 고강도콘크리트의 피로거동에 관한 연구)

  • Kim, Nam-Wook;Choi, Go-Bong;Kim, Han-Sang;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.127-135
    • /
    • 2005
  • Recently, as the concrete structures are becoming bigger, higher, longer and more special, high strength concrete is demanded. But the fracture behavior of high strength concrete is shown more brittle than that of the normal strength concrete. Therefore, in order to improve the brittle fracture behavior and crack propagation resistance, ACI Committee363 has been recommend the use of fiber reinforced concrete which showed superior property against the crack propagation resistance. On the other hand, bridges, concrete pavements and railroads etc. have been exposed to the repetition loading at least several million times during the service life. Therefore, fatigue load is dominantly most of all, but it is very difficult to estimate the suitable fatigue strength calculated by fatigue load. In this research, in order to examine the fatigue behavior of hybrid fiber reinforced high strength concrete, the static and fatigue tests were carried out. And from these results, it was estimated the fatigue strength of hybrid fiber reinforced high strength concrete.

An Experimental Study on Fatigue Behavior of High Strength Reinforced Concrete Beams (고강도 철근콘크리트 보의 피로거동에 관한 실험적 연구)

  • 임채영;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.113-118
    • /
    • 1998
  • The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57 ~ 66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

Fatigue Life Analysis of Spot Weldment of Cold Rolled and High Strength Steel Using FEM (FEM에 의한 일반냉연강판 및 고장력강판의 점용접 피로수명해석)

  • Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong;Kim, Hong-Gun;Kim, Kyu-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2008
  • Cold rolled and high strength steel were used for vehicle bodys to satisfy environmental regulation and improve fuel ratio. This paper presented a method far determining the fatigue life of cold rolled steel sheet EZNCEN and high strength steel sheet HS40R spot weldment used in vehicles. We can estimate the fatigue life of the spot weldments from the MSC/FATIGUE using the finite element method. The maximum load is found in the nugget part of both surfaces. The cold rolled steel and the high strength steel showed the maximum stress 746MPa and 730MPa in the effective nugget part when the weld current was 8KA and 7KA, respectively. Also the some weld current of the cold rolled steel and high strength steel is applied, the fatigue life of high strength steel is obtained about four times longer than the cold rolled steel.

Effects of Structure and Defect on Fatigue Limit in High Strength Ductile Irons

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.530-536
    • /
    • 2000
  • In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits$({\sigma}_w)$ and the maximum defect sizes $(\sqrt{area}_{max})$ was expressed as ${\sigma}_w^n{\cdot}{\sqrt{area}}_{max}=C_2$. Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates.

  • PDF

Shear-Fatigue Behavior of High-Strength Reinforced Concrete Beams under Repeated Loading (반복하중을 받는 고강도 철근콘크리트 보의 전단피로 거동)

  • 곽계환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.92-103
    • /
    • 1999
  • Recently structural damage has been frequently observed in reinforced concrete brdiges due to repeated loads such as vehicular traffic an due to continual overloads by heavy duty trucks. Therefore, the purpose of this experimental stduy is to investigate the damage mechanism due to fatigue behavior of high-strength reinforced concrete beams under repeated loads. From the test results, the relation of cycle loading to deflection is on the mid-span , the crack growth and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results , high-strength reinforced concrete beams failed to 57 ∼66 percent of the static ultimate strength . Fatigue strength aobut two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

Fatigue Strength For The Butt Welded Joint Of High Strength Steel (고강도강(高强度鋼) 맞대기 용접연결부(鎔接連結部)의 피로강도(疲勞强度))

  • Kim, Sung Hoon;Bae, Doo Byong;Kim, Myeong Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.385-394
    • /
    • 2002
  • Currently, high strength steel is not used for steel bridges in Korea, except for the SM570 high strength steel in very isolated cases. The study aimed to promote the active adaptation of high strength steel for long-span steel bridges. Thus, the fatigue behavior of SM570 and POSTEN80 high strength steel was investigated. For the experimental study, the butt welded joints samples were manufactured. Likewise, regular amplitude tensile fatigue tests were conducted. Test results, e.g., location of fatigue cracks and their propagation were compared with the findings of other researchers. After analyzing the effects of fatigue strength, e.g., static tensile strength and plate thickness of base metal, basic data for fatigue design criteria of SM570 and POSTEN80 high strength steel were presented.

A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material (고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구)

  • Park, M.K.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.

Fatigue Strength for the Non Load Carrying cruciform Welded Joints of High Strength Steel (고강도강 하중비전달형 십자용접연결부의 피로강도)

  • Kim, Sung Hoon;Bae, Doo Byong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.453-461
    • /
    • 2002
  • This study investigated the fatigue stength of non-load carrying cruciform welded joints, which was maunfactured using the SM570 and POSTEN80 high strengh steel. Factors such as fatigue strength, fatigue crack initiation and propagation, thickness effect, and the relatioinship between the static strength and the fatigue strength were examined and compared with previous fatigue testing results. Results showed that the fatigue strength of SM570 and POSTEN80 steel are higher than the grade represented on the design specification. It is also identified the size effect and the dependence of the static stength in a few cases.

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

A Basic Study on Behavior of The Fatigue Fracture of Tension Bar (인장강봉(引張鋼捧)의 피로파괴거동(疲勞破壞擧動)에 관(關)한 기초적(基礎的) 연구)

  • Jeong, Yeong Hwa;Shim, Gyo Sung
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.135-143
    • /
    • 1991
  • The fatigue tension tests were performed by use of the specimens without and with a hole, 1/4 crack and 1/2 crack, made of SS41 and S45C steel round bars. Followings were these results. It was shown that in the base metal and the specimen with a hole the fatigue strength of the high strength steel bars was lower than that of the low strength steel bars under the low stress range. It was shown that the fatigue strength of the specimen with a hole was nearly same as that of the base metal, but the fatigue strength of the specimens with the crack was much lower than that of the base metal. It was shown that the fatigue strength of the specimens with the crack was much lower than that of the other specimens under the high stress range.

  • PDF