• Title/Summary/Keyword: High energy density fuels

Search Result 60, Processing Time 0.032 seconds

A Study on the Improved the Hydrophobicity of Torrefied Biomass (반탄화 과정을 통한 바이오매스의 소수성 개선 연구)

  • JEONG, JAE-SEONG;KIM, GYEONG-MIN;JEONG, HYUN-JUN;KIM, GYU-BO;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Biomass, a carbon-neutral fuel, has great advantages because it can replace fossil fuels to reduce greenhouse gas emissions. However, due to its low density, high water content, and hydrophilicity, biomass has disadvantages for transportation and storage. To improve these properties, a pretreatment process of biomass is required. One of the various pre-treatment technologies, torrefacion, makes biomass similar to coal through low-temperature pyrolysis. In this study, torrefacion treatment was carried out at 200, 230, 250, 280, and $300^{\circ}C$ for wood pellet, empty fruit bunch (EFB) and kenaf, and the feasibility of replacing coal with fuel was examined. Hygroscopicity tests were conducted to analyze the hydrophobicity of biomass, and its chemical structure changes were investigated using Infrared spectrum analysis. It was confirmed that the hygroscopicity was decreased gradually as the torrefacion temperature increased according to the hygroscopicity tests. The hydrophilicity was reduced according to the pyrolysis of hemicellulose, cellulose, and lignin of biomass.

Thermal Compatibility of High Density U-Mo Powder Fuels Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyun-Suk;Chang, Se-Jung;Ko, Young-Mo;Lee, Don-Bae;Kim, Chang-Kyu;Kuk, Il-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.165-170
    • /
    • 1997
  • Samples of extruded dispersions of 24 vol.% spherical U-2wt%Mo and U-10wt.%Mo powders in an aluminum matrix were annealed for over 2,000 hours at 40$0^{\circ}C$. No significant dimensional changes occurred in the U-1025.%Mo/aluminum dispersions. The U-2wt.%Mo/aluminum dispersion, however, increased in volume by 26% after 2,000 hours at 40$0^{\circ}C$. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of U-Mo and aluminum. Interdiffusion between U-10wt.%Mo and aluminum was found to be minimal. The different diffusion behavior is primarily due to the fact that U-2wt.%Mo decomposes from an as-atomized metastable r-phase(bcc) solid solution into the equilibrium r-U and U$_2$Mo two-phase structure during the experiment, whereas U-10wt.%Mo retains the metastable r-phase structure after the 2,000 hours anneal and thereby displays superior thermal compatibility with aluminum compared to U-2wt.%Mo. In addition, the molybdenium supersaturated in U-10wt.%Mo particles inhibits the diffusion of aluminum atoms along the grain boundary into the particle. Also, the dissolution of only a few Mo atoms in UAL$_3$ retards the formation of the intermediate phase, as Mo atoms need to migrate from new intermetallic compounds to unreacted islands.

  • PDF

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

The Evaluation of Hydrogenation Properties on $MgH_x-Fe_2O_3$ Composite by Mechanical Alloying (기계적 합금화법으로 제조된 $MgH_x-Fe_2O_3$ 복합재료의 수소화 특성 평가)

  • Seok, Song;Cho, Kyoung-Won;Hong, Hae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • Hydrogen has a high potential to be a renewable substitute for fossil fuels, because of its high gravimetric energy density and environment friendliness. In particular, Magnesium have attracted much interest since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve the kinetic is addition of metal oxide. In this paper, the effect of $Fe_2O_3$ concentration on the kinetics of Mg hydrogen absorption reaction was investigated. $MgH_x-Fe_2O_3$ composites have been synthesized by hydrogen induced mechanical alloying. The powder synthesized was characterized by XRD, SEM and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. Absorption and desorption kinetics of Mg catalyzed with 5,10 mass% $Fe_2O_3$ are determined at 423, 473, 523, 573, 623K.

Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering (고상소결에 의한 방사성 희토류산화물의 고화)

  • Ahn, Byung-Gil;Park, Hwan-Seo;Kim, Hwan-Young;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare eath oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix(ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilzed with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

Development of High Flow MPI Gas Injector for Heavy Duty Natural Gas Engine (대형 천연가스 엔진의 고유량 MPI 분사기 개발)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Jee, Kang-Hoon;Choi, Min-Ho;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • Natural gas is the world's most plentiful combustible fuel, abundantly acailable in all continent. A fuel injector designed specifically for low energy density gaseous fuels has been developed. The injector incorporates design features that are necessary to optimize the performance for fuels such as CNG, LNG. Gaseous fuel injectors have a decisive influence upon starting performance, driveability, fuel consumption and exhaust emissions. A gaseous fuel injector has been developed to cope with the considerably larger volume flow rates and the developed gaseous fuel injector could be used at heavy duty natural gas engine. The static flow of injectors at various inlet pressure was directly proportional and the controllability showed great performance.

  • PDF

Development of Precision Drilling Machine for the Instrumentation of Nuclear Fuels (핵연료계장을 위한 정밀 드릴링장치 개발)

  • Hong, Jintae;Jeong, Hwang-Young;Ahn, Sung-Ho;Joung, Chang-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.223-230
    • /
    • 2013
  • When a new nuclear fuel is developed, an irradiation test needs to be carried out in the research reactor to analyze the performance of the new nuclear fuel. In order to check the performance of a nuclear fuel during the irradiation test in the test loop of a research reactor, sensors need to be attached in and out of the fuel rod and connect them with instrumentation cables to the measuring device located outside of the reactor pool. In particular, to check the temporary temperature change at the center of a nuclear fuel during the irradiation test, a thermocouple should be instrumented at the center of the fuel rod. Therefore, a hole needs to be made at the center of fuel pellet to put in the thermocouple. However, because the hardness and the density of a sintered $UO_2$ pellet are very high, it is difficult to make a small fine hole on a sintered $UO_2$ pellet using a simple drilling machine even though we use a diamond drill bit made by electro deposition. In this study, an automated drilling machine using a CVD diamond drill has been developed to make a fine hole in a fuel pellet without changing tools or breakage of workpiece. A sintered alumina ($Al_2O_3$) block which has a higher hardness than a sintered $UO_2$ pellet is used as a test specimen. Then, it is verified that a precise hole can be drilled off without breakage of the drill bit in a short time.

Image reconstruction algorithm for momentum dependent muon scattering tomography

  • JungHyun Bae;Rose Montgomery;Stylianos Chatzidakis
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1553-1561
    • /
    • 2024
  • Nondestructive radiography using cosmic ray muons has been used for decades to monitor nuclear reactor and spent nuclear fuel storage. Because nuclear fuel assemblies are highly dense and large, typical radiation probes such as x-rays cannot penetrate these target imaging objects. Although cosmic ray muons are highly penetrative for nuclear fuels as a result of their relatively high energy, the wide application of muon tomography is limited because of naturally low cosmic ray muon flux. This work presents a new image reconstruction algorithm to maximize the utility of cosmic ray muon in tomography applications. Muon momentum information is used to improve imaging resolution, as well as muon scattering angle. In this work, a new convolution was introduced known as M-value, which is a mathematical integration of two measured quantities: scattering angle and momentum. It captures the objects' quantity and density in a way that is easy to use with image reconstruction algorithms. The results demonstrate how to reconstruct images when muon momentum measurements are included in a typical muon scattering tomography algorithm. Using M-value improves muon tomography image resolution by replacing the scattering angle value without increasing computation costs. This new algorithm is projected to be a standard nondestructive radiography technique for spent nuclear fuel and nuclear material management.

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations (금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구)

  • Nde, Dieudonne Tanue;Lee, Ji Won;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.