• Title/Summary/Keyword: High embankment

Search Result 194, Processing Time 0.024 seconds

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Failure Modes in Piled Embankments (말뚝으로 지지된 성토지반의 파괴형태)

  • 홍원표;윤중만;서문성
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.207-220
    • /
    • 1999
  • Model tests were performed to investigate the failure modes in embankments on soft ground supported by piles with cap beams. In the model tests, Jumunjin standard sand was placed on simulated cap beams and soft ground. The cap beams are placed perpendicular to the longitudinal axis of the embankment. The colored sand and the Jmniin standard sand were placed one after the other above cap beams and soft ground to make lateral stripes with 3mm thickness in the embarkment. The colored sand was prepared by coating the Jumunjin sand with black lead powder. The photographs illustrate the two characteristic modes of failure in embarkments. One is the soil arching failure and the other is the punching shear failure. The failure mode depends on the height of embankment and the space between cap beams. That is, if the embankment is high enough compared with the space between cap beams, it will fail in arching failure. On the other hand if the embarkment is relatively low or the space between piles is too wide, it will fail in punching shear failure. The soil arching develops in embarkment as a semicylindrical arch with a thickness equal to the width of the cap beam. And the soil wedge developed above the cap beams remains intact during both arching and punching failures. The boundary of punching shear failure of the displaced soil mass can be defined on the basis of observation of the photographs.

  • PDF

Monitoring Vegetation Changes after Constructing the Vegetation-mat Measures for Greening in Embankment - A Case Study of Tancheon, Seongnam - (호안 녹화용 매트 시공 후 식생변화 모니터링 - 성남시 탄천을 중심으로 -)

  • Lee, Soo-Dong;Kang, Hyun-Kyung;Jang, Han-Sol
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.302-317
    • /
    • 2010
  • In this study, not only to present the management plan but also to verify the effectiveness for a area of improving the landscape and the area of creating the base of bio-inhabitation in Tancheon stream concrete embankment where were practised the vegetation-mat measures for greening via monitoring i.e. restoration progress. The results of monitoring, there were a total of 41 taxa, 18 families, 38 species, 3 varieties in 2006, moreover in the 2007, there were a total of 59 taxa, 19 families, 56 species, 3 varieties and in the period 2008, 64 taxa, 29 families, 59 species, 8 varieties. Therefore, these site has increased the plant spaces year by year. The distribution of vegetation characteristics shows that Miscanthus sacchariflorus and Pennisetum alopecuroides expands their influence in the area of applying the construction method. Those area appears a diversity of native species by the stream deposition at the flood. Thus, its condition is very soundly ecological health and eco-friend. At present, native species have been dominant, however, disturbed species and invasive species can be expected to increase dramatically in the future. Therefore, it is necessary to a long-range monitoring and management for maintaining an environmentally sound aquatic ecosystem. On this area refer to mix the river vegetation of primary succession and disturbed vegetation. For that reason, the method of constructing the vegetation-mat measures for greening in embankment does not need to remove the concrete and can install a coir-mat on the top. It leads to improve the landscape, moreover, it was analysed the such dramatic changes in the vegetation species richness by providing continuous the plant growth basis have a impact on in bio-diversity.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

Grouting Injection Effectiveness of a Permeable Compacting Grout using Permeable Compaction Type Packer (침투다짐형 팩커를 이용한 침투다짐 그라우트의 주입 효과)

  • Park, Sung-Yong;Shim, Houng-Gen;Kang, Hee-Jin;Lim, One-Bin;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Permeating injection is commonly known as an ideal type of injection in grouting reservoir embankment, yet often-combined permeating and fracturing injection grouting operation can disturb the original soil. A grouting method has been regarded as effective and developed to ameliorate the possible disturbance problem. It involves compaction grouting with low expansive pressure near the injection hole and repetitive injection and compaction with grout material that allows ideal permeating injection. This thesis develops Hybrid Grout (ie. HG grout) that allows various application in any ground condition combined together, has high fineness and low viscosity, and expands permeation injection to silty sand. It researches on the injection effect of permeable compaction grout which is done with PC packer and is a combination of HG grout and expansion agent to obtain permeation compaction effect on the area near grout injection spot by developing Permeable Compaction Type Packer(ie. PC packer). As the developed PC packer, HG grout, and and expansion agent (HI-E) are applied to reservoir embankment reinforcement grouting, possibile permeation compaction effect that satisfies reservoir embankment grouting standard is confirmed according to the research.

Utilization of LFWD for Compaction Management of Embankment in Expressway Construction (고속도로 건설 시 성토부 다짐관리를 위한 LFWD의 활용성)

  • Park, Yangheum;Jang, Ilyoung;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2021
  • The evaluation of the degree of compaction of the embankment area, which accounts for most of highway earthworks, is generally performed by a flat plate loading test. The plate loading test is a traditional test method and has high reliability in the field. However, as reaction force equipment must be carried out and it takes about 40 minutes per site during the test, there may be limitations in managing the entire expanse of earthworks. Meanwhile, in order to overcome this, the Ministry of Land, Infrastructure and Transport proposed a simple method of evaluating the level of compactness in the provisional guidelines for compaction management of the packaging infrastructure in 2010. However, it has not been utilized at the highway construction site until now, 10 years later. Therefore, this study attempted to verify the utility of the compaction evaluation method using LFWD (Light Falling Weight Deflectometer) of the impact loading method among the test methods suggested in the provisional guideline. To this end, the correlation was derived by conducting a plate loading test and an LFWD test for each site property and compaction degree. As a result of the test, there was no consistency of test data in the ground with a relative compaction of 80% or less. However, it was confirmed that the correlation has a tendency to increase beyond that. If the test method or test equipment is improved to ensure the consistency of the test values of the impact loading method in the future, it will play a big role in solving the blind spot for compaction management in the earthworks.

A Study on Compaction Characteristics of Surplus Soils in Mountainous Areas in Busan, GyungNam Province (부산 경남지역 산지 현장 발생토의 다짐특성 연구)

  • Jung-Uk Kang;Gi-Ju Noh;Tae-Hyung Kim;In-Gon Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2023
  • Most of the industrial complexes and housing complexes in Busan and Gyeongnam were constructed by developing mountainous areas, except for some landfill areas. During the development process, the surplus soil for site development was mainly used as the embankment material. In the field, however, even if the material of the material changes during the embankment work for site development, for convenience reasons such as construction period and site conditions, the material property test and compaction test are not additionally conducted for the embankment material, and quality control is conducted. In this study, physical property tests and compaction tests were conducted on surplus soils in mountainous areas in Busan, GyungNam Province and then regression analysis was performed on the data. In addition, a comparative analysis was conducted along with existing studies in Korea. The surplus soils at the sites in Busan and Gyeongnam were mainly weathered soils of granites, and were classified into clayey sand (SC) and silty sand (SM). As a result of regression analysis of the compaction characteristics according to the content of coarse and fine soils, the correlation between them was very high. Using the relational formula as a result of this study, it will be very useful for compaction management of the surplus soils in the field.

Analyses of Shear Stress and Erosion Characteristic in a Vegetated Levee Revetment with Root Fiber Quantity (근모량에 따른 식생호안의 전단강도와 침식특성 분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This study analyzed shear stress and erosion characteristic of a vegetated levee embankment with root fiber quantity, which is an important factor for evaluating the stability of it. The averaged root fiber quantity in a vegetated levee revetment was measured by the sampler manufactured by this research. The Phragmites Japonica Steud which is somewhat dominant species in a vegetated levee embankment was selected as an experimental vegetation. As a result of experiment of each flow regime, the shear stress was increased while root fiber quantity was increased and the erosion rate was exponentially decreased as the root fiber quantity was increased. The erosion rate was exponentially decreased as the shear stress was increased which is shown that the increase of shear stress by root fiber quantity results in the increase of erosion resistance in a vegetated soil. The relationship between shear stress and erosion rate with root fiber quantity were analyzed and their regression equations were suggested with high determination coefficients. The hydraulic stability is governed by the increase of shear stress by root fiber quantity and the Froude number of flow characteristic in a vegetated levee revetment.

A Study on the Water-Purification Characteristics of Bio-Composite Planting Blocks (바이오 복합 식생블록의 수질정화 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Choi, Joong-Dae;Kim, Ki-Sung;Seo, Ji-Yeon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • This study was performed to evaluate the water purification properties of bio-composites planting blocks using oyster shell and effective microorganism that have high absorption ability of heavy metals and organics to develop environmentally friendly river embankment technique contained various factors such as oyster shells, effective microorganism, porous concrete and planting embankment block. To maximize greening effect, the seeds were arbitrarily sown. In addition, in order to analyze the effect of water quality purification after the planting, the samples were collected from each designated zone 1, 7 and 30 days after steeping in water. Then, the samples were analyzed in terms of seven test items such as SS, BOD, COD, T-N, T-P, pH, etc. on the basis of the test method for water pollution. The following conclusions were reached from the test result. As a result of analysis for water quality purification for the concrete block containing the effective microorganism, it was found that the values for SS, BOD, T-N and T-P for the sample taken after 30 days were lower than the initial values, which indicated that the water purification effect had been created. The result of the water quality purification analysis for the concrete block containing oyster shell showed that the values for SS, BOD, COD and T-P for the sample taken after 30 days were lower than the initial values which also indicated that it had been effective in water quality purification.

Development and Application of a Model for Restoring a Vegetation Belt to Buffer Pollutant Discharge (수질 오염물질 배출저감을 위한 완충식생 복원 모델 개발)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Moon, Jeong Sook;Bang, Je Yong;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • In order to improve water quality in the Paldang Lake, a riparian vegetation belt, treatment wetland, and artificial floating island were designed for introduction in the upland field, the estuary of tributaries, and the section of water facing mountainous land, respectively. We synthesized vegetation information collected from a reference river and found that herbaceous, shrubby, and tree vegetation zones tended to be dominated by Phragmites japonica, Phalaris arundinacea, etc.; Salix gracilistyla, S. integra, etc.; and S. koreensis, S. subfragilis, and Morus alba, respectively. In our plan, the herbaceous vegetation zone, which is established on floodplains with a high frequency of disturbance, will be left in its natural state. A shrubby vegetation zone will be created by imitating the species composition of the reference river in the ecotone between floodplain and embankment. A tree vegetation zone will be created by imitating species composition on the embankment slope. In the treatment wetland, we plan to create emerged and softwood plant zones by imitating the species composition of the Zizania latifolia community, the Typha orientalis community, the P. communis community, the S. integra community, and the S. koreensis community. The floating island will be created by restoring Z. latifolia and T. orientalis for water purification purposes.