• Title/Summary/Keyword: High efficient control

Search Result 1,305, Processing Time 0.027 seconds

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

An Efficient Rate Control Protocol for Wireless Sensor Network Handling Diverse Traffic

  • Monowar, Muhammad Mostafa;Rahman, Md. Obaidur;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10a
    • /
    • pp.130-131
    • /
    • 2007
  • Wireless Sensor Network typically incorporates diverse applications within the same network. A sensor node may have multiple sensors i.e. light, temperature, seismic etc with different transmission characteristics. Each application has different characteristics and requirements in terms of transmission rates, bandwidth, packet loss and delay demands may be initiated towards the sink. In this paper we propose Heterogeneous Traffic Oriented Rate Control Protocol (HTRCP) which ensures efficient rate control for diverse applications according to the priority specified by the sink. Moreover. HTRCP ensures the node priority based hop by hop dynamic rate adjustment for high link utilization.

  • PDF

The Performance Evaluation and the Design of Controller for the Highly Efficient BLDC Motor using Numerical Analysis (수치해석에 의한 고효율 BLDC 모터의 제어기 설계 및 성능평가에 관한 연구)

  • Woo, Chun-Hee;Park, Gun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • This thesis focuses on the design of control schemes for highly efficient BLDC motor drive applications using drives with output capacity of 1Hp. The control system was designed and implemented on a PIC micro-controller and applied to an electric vehicle as a viable replacement to the existing a high phase induction motor that is currently being used for these low cost, small traction drive applications. This paper for the brushless drive research has shown the optimization of the drive system for improved drive design and switching techniques that can improve the entire drive system efficiency for electric vehicle both large and small traction applications using sinusoidal PWM techniques for synthesizing the AC waveforms needed to control these traction drives. In addition, Numerical simulation was conducted to evaluate the performance of designed BLDC Motor using MotorPro simulator.

An Efficient Tag Identification Scheme based on the Reader's Power Control

  • Lim, Intaek
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This paper proposes an efficient tag identification scheme for ISO/IEC18000-7 standard by dividing the tags into smaller groups. Tag grouping is based on the reader's transmission power. This can reduce the responding tags in the collection round. If the small number of tags exists, we can anticipate the collision probability will decrease. And it makes the identification speed high. A collection round initiated by the reader's collection command. It also proceeds with increasing the power of the reader until all tags are identified. The results showed that 25% of the performance improved.

Development of the High Efficient 2-axis Step Motion Control System using NI PXI-7352 (NI PXI-7352를 활용한 PC 기반의 고성능 2축 스텝 모션 제어시스템 개발)

  • Lee, Un-Seon;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • The automatic control and motion control technology including the sensor network technology are important in the ubiquitous environment to make human life easy. In the industrial site and living environment, the demand for the motion control technology and position control technology which are faster and more precise is increasing. Especially, demand for the PC based motion control system is mounting in order to keep up with the improved GUI environment and ever-changing industrial site. This research is focused to develop the Highly Efficient 2-axis Step Motion Control System which can be variously applied in the industrial site on the basis of the LabVIEW - graphic code programming language - with user interface, using the NI PXI-7352 controller and the NI step motor in which it provides the high reliability and the precise motion control.

Highly Efficient Control of the Doubly Fed Induction Motor

  • Drid, Said;Makouf, Abdesslam;Nait-Said, Mohamed-Said;Tadjine, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.478-484
    • /
    • 2007
  • This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes# controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation and experimental results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.

A Case study on the plan for the ESC integrating optimized train operation system for Fire & power failure accident in subway (도시철도 화재$\cdot$단전시 최적 열차운행을 위한 통합운영체계 구축방안에 관한 연구)

  • Kim Young-Wook;Choi Se-Wan;Kim Young-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1185-1192
    • /
    • 2004
  • Recently heavy traffic is getting worse because increasing population of transportation in urban area. In order to solve this problem. subway is realized with high speed, high density, highly efficiency. When fire accident happened in Dae-Gu subway in February 2003, there happened loss of people and lots of damage because of not being able to control even though fire alarm which was set up in the station rang. This thesis has constructed a simulation integrating operation system using a Database construction, operating program analysis in order to build up the most efficient train operation system. The result of simulation integrating operation system with emergency virtual situation like station and train fire, train failure, power line failure, all trains running on the rail were secured safety by train operation control system. With integrating operation of each train control system, train system, power system, machine facility system, the most efficient integrating operation system should have been constructed at the time the subway fire and power failure broke out.

  • PDF

A Study of Wireless Communication Network Constructing Policy Plan for an Efficient Railroad System Infrastructure (효율적인 철도시스템을 위한 무선통신망 구축정책 방안연구)

  • Lee, Seungho;Kim, Sigion
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.262-271
    • /
    • 2013
  • Wireless communication networks are recently taking an important role in railroad systems as railways now require high speed and high density operation with the aid of advanced information technology to improve maintenance efficiency and to handle passenger service growth. Train control systems are consequently changing from track circuitbased systems to communication-based systems. This paper analyses the role of wireless communication networks in recent railroad systems, reviews foreign cases, and then suggests a communication network constructing policy for increased transport capacity increase, securement of safety, and efficient train control.

TCP-GT: A New Approach to Congestion Control Based on Goodput and Throughput

  • Jung, Hyung-Soo;Kim, Shin-Gyu;Yeom, Heon-Young;Kang, Soo-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.499-509
    • /
    • 2010
  • A plethora of transmission control protocol (TCP) congestion control algorithms have been devoted to achieving the ultimate goal of high link utilization and fair bandwidth sharing in high bandwidth-delay product (HBDP) networks. We present a new insight into the TCP congestion control problem; in particular an end-to-end delay-based approach for an HBDP network. Our main focus is to design an end-to-end mechanism that can achieve the goal without the assistance of any network feedback. Without a router's aid in notifying the network load factor of a bottleneck link, we utilize goodput and throughput values in order to estimate the load factor. The obtained load factor affects the congestion window adjustment. The new protocol, which is called TCP-goodput and throughput (GT), adopts the carefully designed inversely-proportional increase multiplicative decrease window control policy. Our protocol is stable and efficient regardless of the link capacity, the number of flows, and the round-trip delay. Simulation results show that TCP-GT achieves high utilization, good fairness, small standing queue size, and no packet loss in an HBDP environment.