• Title/Summary/Keyword: High efficiency video coding

Search Result 383, Processing Time 0.026 seconds

EFFICIENT MULTIVIEW VIDEO CODING BY OBJECT SEGMENTATION

  • Boonthep, Narasak;Chiracharit, Werapon;Chamnongthai, Kosin;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.294-297
    • /
    • 2009
  • Multi-view video consists of a set of multiple video sequences from multiple viewpoints or view directions in the same scene. It contains extremely a large amount of data and some extra information to be stored or transmitted to the user. This paper presents inter-view correlations among video objects and the background to reduce the prediction complexity while achieving a high coding efficiency in multi-view video coding. Our proposed algorism is based on object-based segmentation scheme that utilizes video object information obtained from the coded base view. This set of data help us to predict disparity vectors and motion vectors in enhancement views by employing object registration, which leads to high compression and low-complexity coding scheme for enhancement views. An experimental results show that the superiority can provide an improvement of PSNR gain 2.5.3 dB compared to the simulcast.

  • PDF

Fast CU Encoding Schemes Based on Merge Mode and Motion Estimation for HEVC Inter Prediction

  • Wu, Jinfu;Guo, Baolong;Hou, Jie;Yan, Yunyi;Jiang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1195-1211
    • /
    • 2016
  • The emerging video coding standard High Efficiency Video Coding (HEVC) has shown almost 40% bit-rate reduction over the state-of-the-art Advanced Video Coding (AVC) standard but at about 40% computational complexity overhead. The main reason for HEVC computational complexity is the inter prediction that accounts for 60%-70% of the whole encoding time. In this paper, we propose several fast coding unit (CU) encoding schemes based on the Merge mode and motion estimation information to reduce the computational complexity caused by the HEVC inter prediction. Firstly, an early Merge mode decision method based on motion estimation (EMD) is proposed for each CU size. Then, a Merge mode based early termination method (MET) is developed to determine the CU size at an early stage. To provide a better balance between computational complexity and coding efficiency, several fast CU encoding schemes are surveyed according to the rate-distortion-complexity characteristics of EMD and MET methods as a function of CU sizes. These fast CU encoding schemes can be seamlessly incorporated in the existing control structures of the HEVC encoder without limiting its potential parallelization and hardware acceleration. Experimental results demonstrate that the proposed schemes achieve 19%-46% computational complexity reduction over the HEVC test model reference software, HM 16.4, at a cost of 0.2%-2.4% bit-rate increases under the random access coding configuration. The respective values under the low-delay B coding configuration are 17%-43% and 0.1%-1.2%.

Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension (회전 포레스트 분류기법을 이용한 HEVC 스크린 콘텐츠 화면 내 부호화 조기분할 결정 방법)

  • Heo, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.115-125
    • /
    • 2018
  • This paper presents a fast partition decision framework for High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) based on machine learning. Currently, the HEVC performs quad-tree block partitioning process to achieve optimal coding efficiency. Since this process requires a high computational complexity of the encoding device, the fast encoding process has been studied as determining the block structure early. However, in the case of the screen content video coding, it is difficult to apply the conventional early partition decision method because it shows different partition characteristics from natural content. The proposed method solves the problem by classifying the screen content blocks after partition decision, and it shows an increase of 3.11% BD-BR and 42% time reduction compared to the SCC common test condition.

Adaptive Multiview Video Coding Scheme Based on Spatiotemporal Correlation Analyses

  • Zhang, Yun;Jiang, Gang-Yi;Yu, Mei;Ho, Yo-Sung
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2009
  • In this paper, we propose an adaptive multiview video coding scheme based on spatiotemporal correlation analyses using hierarchical B picture (AMVC-HBP) for the integrative encoding performances, including high compression efficiency, low complexity, fast random access, and view scalability, by integrating multiple prediction structures. We also propose an in-coding mode-switching algorithm that enables AMVC-HBP to adaptively select a better prediction structure in the encoding process without any additional complexity. Experimental results show that AMVC-HBP outperforms the previous multiview video coding scheme based on H.264/MPEG-4 AVC using the hierarchical B picture (MVC-HBP) on low complexity for 21.5%, on fast random access for about 20%, and on view scalability for 11% to 15% on average. In addition, distinct coding gain can be achieved by AMVC-HBP for dense and fast-moving sequences compared with MVC-HBP.

  • PDF

Simplified DC Calculation Method for Simplified Depth Coding Mode of 3D High Efficiency Video Coding

  • Jo, Hyunho;Lee, Jin Young;Choi, Byeongdoo;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • This paper proposes a simplified DC calculation method for simplified depth coding (SDC) mode of 3D High Efficiency Video Coding (3D-HEVC) to reduce the computational complexity. For the computational complexity reduction, the current reference software of 3D-HEVC employs reference samples sub-sampling method. However, accumulation, branch, and division operations are still utilized and these operations increase computational complexity. The proposed method calculates DC value without those operations. The experimental results show that the proposed method achieves 0.1% coding gain for synthesized views in common test condition (CTC) with the significantly reduced number of computing operations.

A Method of Merge Candidate List Construction using an Alternative Merge Candidate (대체 병합 후보를 이용한 병합 후보 리스트 구성 기법)

  • Park, Do-Hyeon;Yoon, Yong-Uk;Do, Ji-Hoon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.41-47
    • /
    • 2019
  • Recently, enhanced methods on the inter merging have been being investigated in Versatile Video Coding (VVC) standardization which will be a next generation video coding standard with capability beyond the High Efficiency Video Coding (HEVC). If there is not enough motion information available in the neighboring blocks in the merge mode, zero motion candidate is inserted into the merge candidate list, which could make the coding efficiency decreased. In this paper, we propose an efficient method of constructing the merge mode candidate list to reduce the case that the zero motion is used as a candidate by generating an alternative merge candidate. Experimental results show that the proposed method gives the average BD-rate gain of 0.2% with the decoding time increase of 3% in the comparison with VTM 1.0.

Edge-Based Fast Intra Mode Decision in HEVC

  • Na, Sangkwon;Lee, Wonjae;Lee, Kyohyuk;Yoo, Kiwon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.180-181
    • /
    • 2013
  • High efficiency video coding (HEVC) appears due to the demand on high compression video coding beyond H.264/AVC in ultra-high definition (UHD) videos. As for intra prediction, HEVC has 35 prediction modes while H.264/AVC has 9 intra modes. To exploit the spatial correlation, we adopt an edge detection method, establish the edge map, and adaptively select the candidate modes using the acquired edge information in a block. The number of the candidate modes is determined through trade-off between computational complexity and coding efficiency. Besides, the range of coding unit sizes is determined using the uniqueness of the edge directions for the given image block. As a result, we reduced the encoding time by 56.8% at the cost of 2.5% BD-BR increase on average compared to Full modes at the HEVC reference software (HM 6.0 [1]).

  • PDF

Novel Motion and Disparity Prediction for Multi-view Video Coding

  • Lim, Woong;Nam, Junghak;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.118-127
    • /
    • 2014
  • This paper presents an efficient motion and disparity prediction method for multi-view video coding based on the high efficient video coding (HEVC) standard. The proposed method exploits inter-view candidates for effective prediction of the motion or disparity vector to be coded. The inter-view candidates include not only the motion vectors of adjacent views, but also global disparities across views. The motion vectors coded earlier in an adjacent view were found to be helpful in predicting the current motion vector to reduce the number of bits used in the motion vector information. In addition, the proposed disparity prediction using the global disparity method was found to be effective for interview predictions. A multi-view version based on HEVC was used to evaluate the proposed algorithm, and the proposed correspondence prediction method was implemented on a multi-view platform based on HEVC. The proposed algorithm yielded a coding gain of approximately 2.9% in a high efficiency configuration random access mode.

An Early Termination Algorithm of Prediction Unit (PU) Search for Fast HEVC Encoding (HEVC 고속 부호화를 위한 PU 탐색 조기 종료 기법)

  • Kim, Jae-Wook;Kim, Dong-Hyun;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.627-630
    • /
    • 2014
  • The latest video coding standard, high efficiency video coding (HEVC) achieves high coding efficiency by employing a quadtree-based coding unit (CU) block partitioning structure which allows recursive splitting into four equally sized blocks. At each depth level, each CU is partitioned into variable sized blocks of prediction units (PUs). However, the determination of the best CU partition for each coding tree unit (CTU) and the best PU mode for each CU causes a dramatic increase in computational complexity. To reduce such computational complexity, we propose a fast PU decision algorithm that early terminates PU search. The proposed method skips the computation of R-D cost for certain PU modes in the current CU based on the best mode and the rate-distortion (RD) cost of the upper depth CU. Experimental results show that the proposed method reduces the computational complexity of HM12.0 to 18.1% with only 0.2% increases in BD-rate.

Improvement of Inter prediction by using Homography Reference Picture (Homography 참조 픽처를 사용한 화면 간 예측 효율 향상 방법)

  • Kim, Tae Hyun;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.397-400
    • /
    • 2017
  • Recently, a lot of images containing various global movements have been generated by the activation of the photographic equipment such as the drone and the action cam. In this case, when the motion such as rotation, scaling is generated, it is difficult to expect a high coding efficiency in the conventional inter-picture prediction method using the 2D motion vector. In this paper, we propose a video coding method that reflects global motion through homography reference pictures. As a proposed method, there are 1) a method of generating a new reference picture by grasping a global motion relation between a current picture and a reference picture by homography, and 2) a method of utilizing a homography reference picture for inter-picture prediction. The experiment was applied to the HEVC reference software HM 14.0, and the experimental result showed an increase in encoding efficiency of 6.6% based on RA. Especially, the results using the videos with rotational motion have a maximum coding efficiency of 32.6%, which is expected to show high efficiency in video, which is often represented by complex global motion such as drones.