• 제목/요약/키워드: High efficiency operation

검색결과 1,907건 처리시간 0.032초

고효율 유도전동기 소형 모터코어 금형개발에 관한 연구 (A Study on Development of Small Motor Core Die for High Efficiency Induction Motor)

  • 임세종;김세환;최계광
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.455-460
    • /
    • 2010
  • 고효율 유도전동기는 일반 유도전동기의 발생 손실을 절감시킨 것으로 적은 소비전력으로 에너지를 절약하고, 운전비용이 낮아서 단기간에 초기 설비투자 비용회수가 가능하고, 온도상승이 크지 않아 전동기 수명을 연장시킬 수 있다. 이에 포스코아에서는 이제까지의 경험을 바탕으로 전기 연구원과 협력하여 고효율 유도전동기 개발에 나섰다. 본 논문에서는 고효율 유도전동기 소형모터금형개발에 관하여 연구하였다.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

최적화 기법을 이용한 에너지 효율 프로그램의 지원금 수준 산정 (Estimation of Rebate Level for Energy Efficiency Programs Using Optimization Technique)

  • 박종진;소철호;김진오
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.369-374
    • /
    • 2008
  • This paper presents the evaluation procedures and the estimation method for the estimation of optimal rebate level for EE(Energy Efficiency) programs. The penetration amount of each appliance is estimated by applying price function to preferred diffusion model resulted from model compatibility test. To estimate the optimal rebate level, two objective functions which express the maximum energy saving and operation benefit are introduced and by multi-objective function which can simultaneously consider two objective functions the optimal rebate level of each appliance is estimated. And then, using the decided rebate level and each penetration amount, the priority order for reasonable investment of each high-efficiency appliance is estimated compared to the results of conventional method. Finally, using a benefit/cost analysis based on California standard practice manual, the economic analysis is implemented for the four perspectives such as participant, ratepayer impact measure, program administrator cost and total resource cost.

동기 리럭턴스 전동기의 고성능 운전을 위한 효율 최적화 제어 (Efficiency Optimization Control for High Performance Operation of Synchronous Reluctance Motor)

  • 정동화;이정철;이홍균
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.51-56
    • /
    • 2001
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor (SynRM) which minimizes the copper and iron losses. fen exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

영구자석 고속전동기의 출력밀도 및 효율 향상을 위한 설계 기법 (Design Technique of a Permanent Magnet High-speed Motor for Improving Power Density and Efficiency)

  • 이기덕;이주;이형우
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.425-430
    • /
    • 2014
  • This paper presents a design technique to improve the power density and efficiency of a permanent magnet high-speed motor by using the mono-PM rotor. The suggested model minimized rotor diameter and stack length which have a bad influence on shafting in the high-speed operation. Conventional and suggested motors are analyzed and compared by using FEM(Finite Element Method) to verify the effectiveness. The overall performance such as torque, losses, efficiency and power density and so on are investigated in detail. The results of the analysis deduced that the suggested mono-PM rotor design is superior to the conventional one.

배터리-울트라커패시터 하이브리드 에너지 저장장치를 위한 고효율 전력변환 시스템 (High Efficiency Power Conversion System for Battery-Ultracapacitor Hybrid Energy Storages)

  • 유주승;최우영
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.523-531
    • /
    • 2012
  • This paper proposes a high efficiency power conversion system for battery-ultracapacitor hybrid energy storages. The proposed system has only one bidirectional dc-dc converter for hybrid power source with batteries and ultracapacitors. The hybrid power source has bidirectional switching circuits for selecting one energy storage device. Bidirectional power flow between the energy storage device and high voltage capacitor can be controlled by one bidirectional converter. An asymmetrical switching method is applied to the bidirectional converter for high power efficiency. Switching power losses are reduced by zero-voltage switching of power switches. System operation and design considerations are presented. The experimental results are provided to verify the performance of the proposed system.

정밀 튜닝기반의 고효율 에너지 하비스터 (High Efficiency Energy Harvester by Precision Tuning)

  • 조성원;최병근;손종덕;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.821-825
    • /
    • 2008
  • Requirements of wireless sensor are increasing in machine condition monitoring. But, the limitation of battery power, self-power wireless sensor is necessary for the purpose of stand-alone operation. To overcome this problem, energy harvester is developed by the vibration energy. The purpose of this study is to develop a high efficiency energy harvester with high precision tuning.

  • PDF

Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons

  • Hamza, Rania A.;Iorhemen, Oliver T.;Tay, Joo H.
    • Advances in environmental research
    • /
    • 제5권3호
    • /
    • pp.169-178
    • /
    • 2016
  • This study aimed at determining the treatability of high-strength wastewater (chemical oxygen demand, COD>4000 mg/L) using combined anaerobic-aerobic granular sludge in lagoon systems. The lagoon systems were simulated in laboratory-scale aerated and non-aerated batch processes inoculated with dried granular microorganisms at a dose of 0.4 g/L. In the anaerobic batch, a removal efficiency of 25% was not attained until the 12th day. It took 14 days of aerobic operation to achieve sCOD removal efficiency of 94% at COD:N:P of 100:4:1. The best removal efficiency of sCOD (96%) was achieved in the sequential anaerobic-aerobic batch of 12 days and 2 days, respectively at COD:N:P ratio of 200:4:1. Sequential anaerobic-aerobic treatment can achieve efficient and cost effective treatment for high-strength wastewater in lagoon systems.

Design and Development of a High-Voltage Transformer-less Power Supply for Ozone Generators Based on a Voltage-fed Full Bridge Resonant Inverter

  • Amjad, Muhammad;Salam, Zainal;Facta, Mochammad;Ishaque, Kashif
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.387-398
    • /
    • 2012
  • It is known that transformer based power supplies for ozone generators have low efficiency, high cost and exhibits a limited frequency range of operation. To overcome these disadvantages, this paper proposes a high frequency ozone generator with the absence of a transformer. The voltage step-up is achieved only by utilizing the resonant tank. This is made possible by a novel combination of ozone chamber materials that allow ozone to be generated at only 1.5 - 3.5 $kV_{p-p}$. The input to the resonant tank is driven by a PWM full bridge resonant inverter. Furthermore, zero-current zero-voltage switching (ZCZVS) operation is achieved by employing a duty factor of 25% between the switches of the full bridge. The advantages of the proposed system include high efficiency, low cost and the ability to control ozone production by varying the input voltage to the inverter. The prototype is verified by both simulation and experimental results.

단일 펄스 소프트 스위칭을 이용한 고역률 고효율 DC-DC 컨버터 (High Power Factor and High Efficiency DC-DC Converter using Single-Pulse Soft-Switching)

  • 정상화;권순걸;서기영;이현우;곽동걸;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1148-1150
    • /
    • 2003
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. To improved these, a large number of soft switching topologies included a resonant circuit has been prosed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose a high power factor and high efficiency DC-DC converter using single-pulse soft switching by partial resonant switching node. The switching devices in a prosed circuit are operated with soft switching by the partial resonant method, that is, Partial Resonant Switch Mode Power Converter. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. Also the proposed converter is deemed the most suitable for high power applications where the power switching devices are used. Some simulative results on computer results are included to confirm the validity of the analytical results.

  • PDF