• Title/Summary/Keyword: High early-strength cement paste

Search Result 28, Processing Time 0.03 seconds

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

Investigation for Utilization of Separator Bag Filter Cement (세퍼레이터 백필터 집진 미립자시멘트 (SBFC : Separator Bag Filter Cement)의 활용성 검토)

  • Kim, Kyoung-Min;Park, Sang-Joon;Yoo, Jea-Kang;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.78-83
    • /
    • 2010
  • This paper presents the feasibility of incorporating ultrafine particles collected in the separator bag filter (separator bag filter cement, SBFC) during the cement manufacturing process as an substitution material for cement. SBFC does not require additional processes needed in the existing processes to manufacture high early strength cement such as modifying mineral components and adjusting the firing temperature. Moreover, it can also solve the issue of efficiency decrease resulted from the increase of the grinding time applied in the existing process of manufacturing microcement. Therefore, this research has examined the characteristics of SBFC and fresh properties and mechanical properties after making paste and mortar using SBFC in order to use SBFC as a material to gain early strength of concrete. For results, analyzing the chemical composition and physical properties of SBFC, its blaine value was $6,953cm^3/g$, about double than that of OPC, but its chemical composition showed no significant difference. According to the result of the paste and mortar examination, the paste and mortar mixed with SBFC showed a lower flowability, earlier setting time, and higher compressive strength than that with OPC. The result of microstructure analysis of paste, the paste mixed with SBFC indicated about 9% lower internal porosity at an early age than that of OPC. The compressive strength and flexural strength of mortar were higher in the order of SBFC ratio of 100, 50 and 0% SBFC.

  • PDF

A Study on Sodium Sulfate Activited the Hydration Properties of Fly Ash-cement Paste (황산염나트륨 자극제를 사용한 플라이 애쉬 혼입 시멘트 페이스트의 초기 수화 특성에 관한 기초적 연구)

  • Wang, Zihao;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.129-130
    • /
    • 2021
  • In order to solve the problem of low early-age compressive strength of high volume fly ash concrete. This paper studies the effect of 2% sodium sulfate (Na2SO4) as a chemical activator on the paste with 40% fly ash content and a water-binder ratio of 0.30. The results indicate that the addition of Na2SO4 can effectively improve the early-age compressive strength of the fly ash-cement system, and the strength improvement rate on the first day reached nearly 70%. In addition, calorimetric analysis reveals that the incorporation of Na2SO4 promotes the early hydration of cement and fly ash, increases the cumulative hydration heat and delays the heat peak of the aluminum phase.

  • PDF

Hydration properties of cement pastes containing high-volume mineral admixtures

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.17-38
    • /
    • 2010
  • This research aimed to investigate the influence of high-volume mineral admixtures (MAs), i.e., fly ash and slag, on the hydration characteristics and microstructures of cement pastes. Degree of cement hydration was quantified by the loss-on-ignition technique and degree of pozzolanic reaction was determined by a selective dissolution method. The influence of MAs on the pore structure of paste was measured by mercury intrusion porosimetry. The results showed that the hydration properties of the blended pastes were a function of water to binder ratio, cement replacement level by MAs, and curing age. Pastes containing fly ash exhibited strongly reduced early strength, especially for mix with 45% fly ash. Moreover, at a similar cement replacement level, slag incorporated cement paste showed higher degrees of cement hydration and pozzolanic reaction than that of fly ash incorporated cement paste. Thus, the present study demonstrates that high substitution rates of slag for cement result in better effects on the short- and long-term hydration properties of cement pastes.

Study on the Strength Development of cement paste using High-Early-Strength Cement and Hardening Accelerator (조강시멘트와 경화촉진제가 압축강도에 미치는 영향에 대한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In order to develop concrete generating compressive strength of 15MPa~30MPa aging for 6~12 hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That s because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

Experimental Study on the Early Strength Development Mechanism of Cement Paste Using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 조기강도 발현 메커니즘에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2014
  • The purpose of study is to analyze mechanism with early high portland cement and hardening accelerator. As the result, it was concluded that hardening accelerator makes accelerates appearance of $Ca(OH)_2$ through experiment using TG-DTA when it hydrates with cement. On the result of compressive strength, as increasing the amount of hardening accelerator used, early compressive strength was improved. Also, as a result of hydration heat, hardening accelerator accelerates hydration of $C_3S$ that is cement's component. On the result of XRD's analyzation, hydration product for each age could be check and it was shown that as increasing the amount of hardening accelerator used, peak point of hydration product was recorded high. As the result of SEM, appearance of C-S-H was shown as the amount of $Ca(OH)_2$'s appearance and each age according to additive contents of hardening accelerator. Therefore hardening accelerator used on this study is effective on getting early compressive strength.

Hydration and Compressive Strength of High-volume Fly Ash Cement Paste (하이볼륨 플라이애시 시멘트 페이스트의 수화 및 압축강도 특성)

  • Hwang, Chul-Sung;Moon, Eun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.156-162
    • /
    • 2017
  • Recently, researches on High-Volume Fly ash Cement(HVFC), which is replacing high portion of cement to fly ash, have been actively conducted to reduce $CO_2$ formation. Though HVFC has various advantages, low strength development in early ages is pointed out as the biggest problem in the application of fly ash. In order to overcome such limitations, this study investigated the hydration and compressive strength characteristics of HVFC paste depending on the fly ash content with the mixing ratio varying from 0 to 80 %. Experimental results show that the HVFC paste with low water-binder ratio can overcome the limitation of low compressive strength at early ages. Also, from the result of heat flow delay, 50 % of fly ash weight ratio was the critical point of the filler effect.

Development of Application Block Using Geobond and Ash from Sewage Sludge Incinerator II (하수슬러지 소각재와 무기바인더를 이용한 응용 블록 개발 II)

  • Lee, Hyun-joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.412-417
    • /
    • 2015
  • This study investigated to recycle geobond and ash produced in thesewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement (High Early Strength Portland cement, Micro cement), geobond and sand mixed with sewage sludge ash (SSA). Chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting High Early Strength Portland cement, Micro cement and geobond. Results showed that unconfined the long term compressive strength could be obtained components of sewage sludge ash. It exceeded more than double score 64.6 MPa of the Korean standard ($22.54MPa=229.7kg/cm^2$). Microstructure of solidified block for the different admixture was related to the compressive strength according to SEM analysis. Optimum mixing range of the sewage sludge ash to each binders were found to be 10~40% which can widly safely regulate the confined a long term compressive strength. The best binder of long term compressive strengh was revealed Geobond more than High Early Strength Portland cement and Micro cement. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder & application block for recycling.

Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

  • Liu, Baoju;Tan, Jinxia;Shi, Jinyan;Liang, Hui;Jiang, Junyi;Yang, Yuanxia
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.183-192
    • /
    • 2021
  • Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.

Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 강도발현에 대한 기초적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2013
  • The purpose of this research is to verify the performance of hardening accelerator in cement paste through mechanical performance evaluation and micro structure analysis on hardening accelerator for development of super high early strength concrete. The research results showed that hardening accelerator produced $Ca(OH)_2$ when hydrated with cement, enhancing the degree of saturation of Ca ion by using differential thermal analysis. Moreover, porosity was reduced rapidly as capillary pores were filled by hydration products of $C_3S$. According to the experiment using hydration measurement testing, when 1% and 3% of accelerator were mixed, hydration rate increased toward the second peak point compared to high early strength cement, before the first peak point disappeared. It turned out that adding accelerator accelerated the hydration rate of cement, especially $C_3S$. The shape of C-S-H is shown depending on the amounts of accelerator added and the production and age of $Ca(OH)_2$ by using SEM to observes hydration products. Therefore, it's evident that hardening accelerator used in this research increases amounts of $Ca(OH)_2$ and accelerates $C_3S$, it is effective for the strength development on early age.