• Title/Summary/Keyword: High discharge rate

Search Result 776, Processing Time 0.022 seconds

'Clinical Observation on the 290 cases of Cerebrovascular Accident' (뇌졸중환자(腦卒中患者) 290례(例)에 대(對)한 임상(臨床) 고찰(考察) (III))

  • Kang, Kwan-Ho;Jun, Chan-Yong;Park, Chong-Hyeong
    • The Journal of Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.223-244
    • /
    • 1997
  • Clinical observation was done on 290 cases of patients who were diagnosed as CVA with brain CT, TCD, MRI scan and clinical observation. They were hospitalized in the oriental medical hospital of Kyung-Won University from 1st January to 31st December in 1996. 1. The cases were classified into the following kinds : cerebral infarction, cerebral hemorrhage, and transient ischemic attack. The most case of them was the cerebr진 infarction. 2. There is no significant difference in the frequency of strokes in male and female. And the frequency of strokes was highest in the aged over 50. 3. In cerebral infarction the most frequent lesion was the territory of middle cerebral artery, and in cerebral hemorrhage the most frequent lesion was the basal ganglia. 4. The most ordinary preceding disease was hypertension, and the next was diabetes. 5. The rate of recurrence was high in cerebral infarction. 6. The frequency of strokes seems to have no relation to the season. 7. The cerebral infarction occurred usually in resting and sleeping, and the cerebral hemorrhage in acting. 8. The course of entering hospital, most patients visited this hospital as soon as CVA occurred. And the half of patient visited this hospital within 2 days after CVA attack. 9. In the cases of patients who were unconscious at the admission, the prognosis was worse than that of the alert patients. 10. The common symptoms were motor disability and verbal disturbance. 11. The average duration of hospitalization was 27.4 days, and in case of cerebral hemorrhage the duration was prolonged. 12. The average time to start physical therapy was 13.3rd day after stroke in cerebral infarction and it was 19.9th day after stroke in cerebral hemorrhage. 13. The common complications were urinary tract infection, pneumonia, myocardial infarction and so on. 15. At the time of entering hospital, in most cases the blood pressure was high, but blood pressure was well controlled at the time of discharge. 16. Generally reported, hypercholesterolemia and hypertriglyceridemia are usually found in cerebral infarction. But in this study, they were found more frequently in cerebral hemorrhage than in infarction. 17, In the most cases, western and oriental medical treatments were given simultaneously. 18. In acute or subacute stage, the methods of smoothening the flow of KI(順氣), dispelling phlegm(祛痰), clearing away heat(淸熱) or purgation(瀉下) were frequently used. And in recovering stage, the methods of replenishing KI(補氣), tonifying the blood(補血) or tranquilization(安神) were frequently used.

  • PDF

Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system (고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리)

  • Kim, Jung-Kon;Jung, Hyo-Ki;Son, Joo-Young;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.83-89
    • /
    • 2008
  • Food wastewater derived from the three-stage methane fermentation system developed in this lab contained high concentration organic substances. The organic wastewater should be treated through advanced wastewater treatment system to satisfy the "Permissible Pollutant Discharge Standard of Korea". In order to treat the organic wastewater efficiently, several optimum operation conditions of a modified $UV/TiO_{2}$ photocatalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}$. The optimum pH and coagulant concentration were 4.0 and 2000mg/L, respectively. Through this process, 52.6% of CODcr was removed. The second process was $UV-TiO_{2}$ photocatalytic reaction. The optimum operation conditions for the system were as follows: UV lamp wavelength, 254 nm; wastewater temperature, $40^{\circ}C$; pH 8.0; and air flow rate, 40L/min, respectively. Through the above two combined processes, 69.7% of T-N and 70.9% of CODcr contained in the wastewater were removed.

Thermal Flow Analysis for Development of LED Fog Lamp for Vehicle (차량 LED 안개등 개발을 위한 열유동 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • In order to overcome these disadvantages, the halogen light source, which was previously used as a vehicle fog light, has increased power consumption and a short lifetime, and thus, an automobile light source is gradually being replaced with an LED. However, when the vehicle LED fog light is turned on, there is a disadvantage in reducing the life of the fog lamp due to the high heat generated from the LED. The heat generated by the LED inside the fog lamp is mainly emitted by the heatsink, but most of the remaining heat is released to the outside through convection. When cooling efficiency decreases due to convection, thermal energy generates heat to lenses, reflectors, and bezels, which are the main parts of lamps, or generates high temperatures in LED, thereby shortening the life of LED fog lights. In this study, we tried to improve the heat dissipation performance by convection in addition to the heat dissipation method by heat sink, and to determine the installation location of vents that can discharge the internal air or intake the external air of LED fog lamp for vehicle. Thermal fluid analysis was performed to ensure that the optimal data were reflected in the design. The average velocity of air increased in the order of Case3 and Case2 compared to Case1, which is the existing prototype, and the increase rate of Case3 was relatively higher than that of other cases. This is because the vents installed above and below the fog lamps induce the convective phenomena generated according to the temperature difference, and the heat is efficiently discharged with the increase of the air speed.

Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2] (아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용)

  • Kim, Yoon-Hee;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.205-212
    • /
    • 2004
  • Phosphorus cycle was studied in a deep stratified reservoir in summer monsoon area (Lake Soyang, Korea) by surveying phosphorus input from the watershed and the movement of phosphorus within the reservoir. And the spatial and temporal distribution of phosphorus was modeled with a 2-dimensional water quality model (CE-QUAL-W2), Phosphorus loading was calculated by measuring TP in the main inflowing river (the Soyang River) accounting for 90% of watershed discharge. TP of the Soyang River showed a large daily variation with the flow rate. High phosphorus loading occurred during a few episodic storm runoff laden with suspended sediments and phosphorus. Because storm runoff water on rainy days have lower temperature, it plunges into a depth of same temperature (usually below 20m depth), forming an intermediate turbidity layer with a thickness of 20 ${\sim}$ 30 m. Because of stable thermal stratification in summer the intermediate layer water of high phosphorus content was discharged from the dam through a mid-depth outlet without diffusing into epilimnion. The movement of runoff water within the reservoir, and the subsequent distribution of phosphorus were well simulated by the water quality model showing a good accuracy. The major parameter for the calibration of phosphorus cycle was a settling velocity of detritus, which was calibrated to be 0.75 m ${\cdot}$ $day^{-1}$. It is concluded that the model can be a good simulator of limnological phenomena in reservoirs of summer monsoon area.

A study on magnetron source design and characteristics for super high rate deposition (초고속 증착용 마그네트론원 설계 및 특성에 관한 연구)

  • 빈진호;남경훈;한전건
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.8-8
    • /
    • 2001
  • 초고속 증착은 짧은 시간에 박막 형성을 가능하게 하므로 window glass 코팅등의 대면적 코팅에 있어서 비용을 절감 시키고, 대량생산을 가능하게 만들기 때문에 관심이 집중되고 있다. 고속증착 공정으로는 high current arc, laser arc, hollow cathode discharge ion plating 그리고 마그네트론 스퍼터링법 등이 있다. 특별히 마그네트론 스퍼터링법은 3m이상의 넓이에 코팅을 할때 두께가 매우 균일하며, 증착율은 evaporation 공정에 비해 경제적, 기능적인 면에서 효율적이다. 그리고 증착된 박막은 매우 조밀하고 좋은 밀착력을 갖고 있으며, 고융점 금속을 포함하여 금속 합금 및 혼합물의 비율을 조정 및 금속 산화물, 질화물, 탄화물 등과 같은 금속의 증착도 stoichiometry를 조정하여 박막을 합성 시키는데 있어서 효과적이다. 이러한 초고속 증착을 만들기 위한 마그네트론 스퍼터링법의 요건은 마그네트론 원이 높은 타켓 power density를 가져야 하며, 타켓에서 효율적으로 플라즈마를 구속하여 스퍼터 되는 이온의 양을 최대화 시킬 수 있어 한다. 따라서 본 실험에서는 초고속 증착을 위해서 직경 50mm 타켓의 UBM magnetron원을 설계 제작하였다. 고밀도의 플라즈마를 형성시키기 위해서, Poisson simulation c code를 이용하여 자기장의 방향, 세기 및 밀도를 측정 하였고, 자기장 측정기(Gauss meter)를 이용하여 실제 자장을 측정 비교 분석하였다. 상기의 data를 바탕으로 여러 형상의 마그네트론원을 설계, 제작하였고. 마그네트론 원의 특성 분석을 위해 I-V 방전 특성을 평가하였고 substrate ion current density와 박막의 증착율을 측정하였다.duty-on 시간의 증가에 따라 $Cr_2N$ 상의 형성이 점점 많아져 80% duty-on 시간 경우에는 거의 CrN과 $Cr_2N$ 상이 공존하는 것으로 나타났다. 또한 duty-on 시간이 증가할수록 회절피크의 세기가 증가하여 결정화가 더 많이 진행되어짐을 알 수 있었다. 마찬가지로 바이어스 펄스이 주파수에 다른 결정성의 변화도 펄스의 주파수가 증가할수록 박막이 결정성이 좋아지고 $Cr_2N$ 상이 쉽게 형성되었다. 증착 진공도에 따른 결정성은 상대적으로 질소의 농도가 높은 낮은 진공도에서는 CrN 상이 주로 형성되었으며, 반대로 높은 진공도에서는 $Cr_2N$ 상이 많이 만들어졌다. 즉 $1.3{\times}10^{-2}Torr$의 증착 진공도에서는 CrN 상만이 보이는 반면 $9.0{\tiems}1-^{-2}Torr$ 진공도에서부터 $Cr_2N$ 상이 형성되기 시작하여 $5.0{\tiems}10^{-2}Torr$ 진공도에서는 두개의 상이 혼재되어 있음을 알 수 있었다. 박막의 내마모성을 조사한 결과 CrN 박막의 마찰 계수는 초기에 급격하게 증가한 후 0.5에서 0.6 사이의 값으로 큰 변화를 보이지 않았으며, $Cr_2N$ 박막도 비슷한 거동을 보였다.차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lrcorner$

  • PDF

The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery (리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향)

  • Ko, Hyoung Shin;Park, Hyun Woo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.718-724
    • /
    • 2018
  • In this study, the $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and $LiPF_6$(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of $750{\sim}760^{\circ}C$. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.

The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH (NaOH 화학적 활성화로 제조된 하이브리드 커패시터의 전기화학적 특성)

  • Choi, Jeong Eun;Bae, Ga Yeong;Yang, Jeong Min;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.308-312
    • /
    • 2013
  • Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481 $m^2/g$) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using $LiMn_2O_4$, $LiCoO_2$ as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, $TEABF_4$) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using $LiMn_2O_4$/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

Electrochemical Properties of Boron-doped Cathode Materials (LiNi0.90Co0.05Ti0.05O2) for Lithium-ion Batteries (붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성)

  • Kim, Geun Joong;Park, Hyun Woo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.832-840
    • /
    • 2019
  • To improve the electrochemical performances of the cathode materials, boron-doped $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$ were synthesized by using concentration gradient precursor. The characteristics of the prepared cathode materials were analyzed by XRD, SEM, EDS, PSA, ICP-OES and electrical conductivity measurement. The electrochemical performances were investigated by initial charge/discharge capacity, cycle stability, C-rate, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode material with 0.5 mol% boron exhibited a capacity of 187 mAh/g (0.5 C) in a voltage range of 2.7~4.3 V(vs. $Li/Li^+$), and an capacity retention of 94.7% after 50 cycles. In the relatively high voltage range of 2.7~4.5 V(vs. $Li/Li^+$), it showed a high capacity of 200 mAh/g and capacity retention of 80.5% after 50 cycles.

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode (실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계)

  • Eun Young Lim;Eunsol Lee;Jin Hong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2024
  • Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.