• Title/Summary/Keyword: High directivity

Search Result 158, Processing Time 0.024 seconds

NUMERICAL ANALYSIS OF AXISYMMETIC SCREECH TONE FROM SUPERSONIC JET USING HIGH-ORDER HIGH-RESOLUTION COMPACT SCHEME (고차고해상도 수치기법을 이용한 초음속 제트 screech tone의 axisymmetric mode 해석)

  • Lee, I.C.;Lee, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.56-59
    • /
    • 2007
  • The screech tone of an underexpanded jet is numerically calculated without any specific modeling for the screech tone itself. A fourth-order optimized compact scheme and fourth-order Runge-Kutta method are used to solve the 2D axisymmetric Euler equation. The Fourier transform of pressure signal at upstream shows the directivity pattern of the screech tone very clearly. Pressure signal is shown to observe the generation of the screech tone. Most importantly, we can simulate the axisymmetric mode change of the screech tone very precisely with the proposed method. It can be concluded that the basic phenomenon of the screech tone including its frequency can be calculated and its mode change can be simulated with inviscid Euler equations.

  • PDF

Numerical Investigation of the Cover-Plates Effects on the Rectangular Open Cavity (직사격형 공동에서 덮개 효과에 대한 수치적 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.457-464
    • /
    • 2001
  • The aeroacoustic phenomena in the simple rectangular open cavity are well published by many researchers. But the geometry shapes of aircraft landing gear wells, weapon bays, etc. are more complicate than that of the simple retangular cavity. They are more similar to the cavity having cover-plates at adges, or Helmholtz resonator. Therefore, the effects of cover-plates existing on edges of rectangular open cavity are numerically investigated in this paper. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions and buffer zone techniques are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. Results show that the cover-plates existing on edges of cavity reduce the noise convected from cavity, make the frequency of noise become higher, and change the directivity pattern. So these results can be used in the design of a low noise cavity.

  • PDF

A study on patterns of propagation for high speed train(KTX) (한국형 고속전철(KTX) 방사패턴에 관한 연구)

  • 구동회;김재철;박태원;문경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.836-842
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics. The spherical, cosine and dipole radiation characteristics compared and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation has dipole characteristics for low speed range(below about 150km/h) at electric multiple system. We know that push-pull high speed system(maximum speed: 300km/h) has cosine characteristics of noise propagation. For this purpose, We conduct the experiment of noise and know the empirical formula of noise level and radiation coefficient K. This model of simulation is conducted through point source array model at wheel/rail contact point by using program and experimental formula. We can guess prediction of profile, flat and wear of wheel by above modeling in near field.

  • PDF

Development of Rotor Blade with Low-Noise and High-Efficiency (저소음 고효율 로터깃 개발에 관한 연구)

  • Shin, Seong-Ryong;Sun, Hyo-Sung;Lee, Soo-Gab;Nam, Chan-Jin;Kang, In-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.84-90
    • /
    • 2000
  • Integrated tools are developed for the analysis of the aerodynamic performance and aeroacoustics of helicopter rotors. Heli-NK(Helicopter Navier-Stokes & Kirchhoff) code is for hovering and heli-PA(Helicopter Panel & Acoustic analogy) for forward flight. The former showed its ability to predict the hovering efficiency and high-speed impulsive noise level. Thrust calculation, noise levels, and noise directivity patterns are investigated to confirm the availability of the latter. With some proper validation and improvements. these codes will be more useful and practical.

  • PDF

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF

Design of a Low-Profile, High-Gain Fabry-Perot Cavity Antenna for Ku-Band Applications

  • Nguyen, Truong Khang;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • A Fabry-Perot resonator cavity antenna for Ku-band application is presented in this paper. The Fabry-Perot cavity is formed by a ground plane and a frequency selective surface (FSS) made of a circular hole array. The cavity resonance is excited by a single-feed microstrip patch located inside the cavity. The measured results show that the proposed antenna has an impedance bandwidth of approximately 13% ($VSWR{\leq}2$) and a 3-dB gain bandwidth of approximately 7%. The antenna produces a maximum gain of 18.5 dBi and good radiation patterns over the entire 3-dB gain bandwidth. The antenna's very thin profile, high directivity, and single excitation feed make it promising for use in wireless and satellite communication applications in a Ku-band frequency.

RFID Antenna Module with High Isolation Characteristic between Tx and Rx (송.수신 격리 특성을 개선한 RFID 안테나 모듈)

  • Park, Dong-Hoon;Kim, Gui-Sung;Kim, Hyung-Eun;Park, Hye-Mi;Wei, Kai;Lim, Eun-Cheon;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.370-375
    • /
    • 2011
  • In this paper, we propose an antenna module with high isolation between Tx and Rx in RFID reader module. The proposed module consists of a quadrafilar antenna and a directional coupler with a switchable dummy load to improve the directivity. The proposed module achieves the isolation higher than 20 dB between Tx and Rx. To show the validity of the proposed scheme, we have performed the measurement of tagging range and multi-tagging ability. The experiment results show that the detecting range and multi-tagging ability are enhanced by 81% and 200%, respectively.

Instabilities of High-speed Impinging Circular Jets (고속 원형충돌제트의 불안정 특성)

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.256-262
    • /
    • 1997
  • The characteristics of the unstable impinging circular jet were investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes Si and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed by measuring frequency and phase-distribution around the jet. Radiation characteristics of impinging-tone were studied by measuring axial directivity. It was founded that the radiation patterns of symmetric and helical mode are different and it is toward the plate as the impinging distance increased. By estimating the convection velocity of the unstable jet, it was founded that the convection speed decreases with the frequency and its decreasing pattern varies with unstable modes S1, S2 and H, respectively.

  • PDF

Development of a Wideband Power Sensor for the Measurement of Wireless Power (무선 주파수 전력 측정을 위한 광대역 전력 센서 개발)

  • Hwang, Mun-Su;Na, In-Ho;Gu, Ja-Gyeong;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3600-3607
    • /
    • 2009
  • This paper describes the development of a power sensor for wireless signal over the ultra wideband range of 300~3800MHz with the detecting range of 150mW~150W. The proposed power sensor fundamentally has the function of not only detecting wireless power, but recognizing frequency and measuring VSWR. The development of the power sensor is completed through the design of dual directional coupler, design of power detector block which produces DC data using the corresponding RF input power level, and establishment of collecting the exact calibration data. The dual directional coupler has the operating frequency of 300~3800MHz with the 0.085dB of insertion loss, and directivity of 30dB at least at 3800MHz. The developed power sensor has the capability of power sensing with less than 0.25dB of resolution as well as measuring VSWR of 1.17~1.96 under the practical operating situation of very high power up to 150W at 300~3800MHz.

Investigation of the Acoustic Performance of Music Halls Using Measured Radiation Characteristics of the Korean Traditional Musical Instruments (국악기의 음향방사특성에 따른 국악당의 음향성능조사)

  • Haan Chan-Hoon;Lee Wangu;Jeong Cheol-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.469-480
    • /
    • 2005
  • There have been always some difficulties in target setting and conditioning of acoustic performances or the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. As the 2nd experiment succeeding the previous study[1], the radiation characteristics of eight typical Korean traditional musical sources were investigated if precision. The selected musical sources were Geomungo, Haegeum (string), Piri, Taepyeongso (woodwind), Buk, Kwaengguari, Jing (drum), and male Pansori Chang (vocal Performance). The results show that the directivity pattern of each instrument is different and has their own directivity characteristics. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. In order to investigate the acoustical characteristics of the instruments depending on the spatial variation four different shapes of halls were introduced including rectangular, fan. horse-shoe and geometrical shapes. Room acoustical parameters such as RT, SPL, C80, LF, STI were calculated at each type or hall. As the results, It was found that the rectangular hall has the most high clarity. lateral energy and STI values among low shapes of halls. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.