• Title/Summary/Keyword: High deposition

Search Result 3,337, Processing Time 0.034 seconds

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

The estimation of the marine terrace of the Last Interglacial culmination stage(MIS 5e) in the Sanhari of Ulsan coast,southeastern Korea (울산 해안의 최종간빙기 최온난기 추정 해성단구)

  • Choi, Seong-Gil
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.47-59
    • /
    • 2016
  • The formation age and depositional environment of the marine terrace I of the estimated paleoshoreline altitude of 18m in Sanhari of Ulsan coast, southeastern Korea were investigated on the basis of examination of lithofacies and stratigraphy of terrace deposits. Marine deposits of the terrace is composed of rounded boulders(70cm in diameter) and rounded pebbles(1.0cm in diameter) which overlay them. The above rounded boulders which lie on the paleo-shore platform are considered to have been formed by wave abrasion in the same period that the paleo-shore platform was developed. The rounded pebbles which lie on the rounded boulder layer are considered to have been deposited in gravel beach and berm environment, judging from the laminae developed in this layer. The paleo-shore platform and marine rounded gravel layer of the terrace are assumed to have been formed in the large transgression period of the Last Interglacial culmination stage(MIS 5e), judging from the comparision of the formation age of 125ka B.P. of Juckcheon terrace I in the adjacent Pohang coast which was dated by amino acid dating. The terrestrial deposit of this terrace was largely composed of angular and subangular gravel mixed with marine rounded pebble which has been carried away mainly from the deposit of previous marine terraces and redeposited in this terrace. The lowest peat layer of terrastrial deposit was considered to have been deposited during the period from the late MIS 5e which is the estimated finishing time of deposition of the above marine gravels to the early stage of following regression period(MIS 5d) in which the sea level was still high. The sediments of angular and subangular gravel deposit which lie on this peat layer were assumed to have been deposited during the period from the early stage of the first regression period(MIS 5d) of the Last Interglacial to the Last Glacial. The lower part of the angular gravel layer is composed of the deposits of the fluvial and colluvial sediments, whereas most of the upper and middle part of the layer is mainly composed of angular gravels of colluvial sediments formed in the cold environment.

Metallic FDM Process to Fabricate a Metallic Structure for a Small IoT Device (소형 IoT 용 금속 기구물 제작을 위한 금속 FDM 공정 연구)

  • Kang, In-Koo;Lee, Sun-Ho;Lee, Dong-Jin;Kim, Kun-Woo;Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.21-26
    • /
    • 2020
  • An autonomous driving system is based on the deep learning system built by big data which are obtained by various IoT sensors. The miniaturization and high performance of the IoT sensors are needed for diverse devices including the autonomous driving system. Specially, the miniaturization of the sensors leads to compel the miniaturization of the fixer structures. In the viewpoint of the miniaturization, metallic structure is a best solution to attach the small IoT sensors to the main body. However, it is hard to manufacture the small metallic structure with a conventional machining process or manufacturing cost greatly increases. As one of solutions for the problems, in this work, metallic FDM (Fused depositon modeling) based on metallic filament was proposed and the FDM process was investigated to fabricate the small metallic structure. Final part was obtained by the post-process that consists of debinding and sintering. In this work, the relationship between infill rate and the density of the part after the post-process was investigated. The investigation of the relationship is based on the fact that the infill rate and the density obtained from the post-processing is not same. It can be said that this work is a fundamental research to obtain the higher density of the printed part.

Vegetation structure and distribution characteristics of Symplocos prunifolia, a rare evergreen broad-leaved tree in Korea

  • Kim, Yangji;Song, Kukman;Yim, Eunyoung;Seo, Yeonok;Choi, Hyungsoon;Choi, Byoungki
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Background: In Korea, Symplocos prunifolia Siebold. & Zucc. is only found on Jeju Island. Conservation of the species is difficult because little is known about its distribution and natural habitat. The lack of research and survey data on the characteristics of native vegetation and distribution of this species means that there is insufficient information to guide the management and conservation of this species and related vegetation. Therefore, this study aims to identify the distribution and vegetation associated with S. prunifolia. Results: As a result of field investigations, it was confirmed that the native S. prunifolia communities were distributed in 4 areas located on the southern side of Mt. Halla and within the evergreen broad-leaved forest zones. Furthermore, these evergreen broad-leaved forest zones are themselves located in the warm temperate zone which are distributed along the valley sides at elevations between 318 and 461 m. S. prunifolia was only found on the south side of Mt. Halla, and mainly on south-facing slopes; however, small communities were found to be growing on northwest-facing slopes. It has been confirmed that S. prunifolia trees are rare but an important constituent species in the evergreen broad-leaved forest of Jeju. The mean importance percentage of S. prunifolia community was 48.84 for Castanopsis sieboldii, 17.79 for Quercus acuta, and 12.12 for Pinus thunbergii; S. prunifolia was the ninth most important species (2.6). Conclusions: S. prunifolia can be found growing along the natural streams of Jeju, where there is little anthropogenic influence and where the streams have caused soil disturbance through natural processes of erosion and deposition of sediments. Currently, the native area of S. prunifolia is about 3300 ㎡, which contains a confirmed population of 180 individual plants. As a result of these low population sizes, it places it in the category of an extremely endangered plant in Korea. In some native sites, the canopy of evergreen broad-leaved forest formed, but the frequency and coverage of species were not high. Negative factors that contributed to the low distribution of this species were factors such as lacking in shade tolerance, low fruiting rates, small native areas, and special habitats as well as requiring adequate stream disturbance. Presently, due to changes in climate, it is unclear whether this species will see an increase in its population and habitat area or whether it will remain as an endangered species within Korea. What is clear, however, is that the preservation of the present native habitats and population is extremely important if the population is to be maintained and expanded. It is also meaningful in terms of the stable conservation of biodiversity in Korea. Therefore, based on the results of this study, it is judged that a systematic evaluation for the preservation and conservation of the habitat and vegetation management method of S. prunifolia should be conducted.

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.

A Study on STR Analysis According to the Method of Developing Latent Fngerprints Deposited on Non-Porous Surfaces in the Marine Environment (해양환경 내 비다공성 표면에 유류된 잠재지문 현출방법에 따른 STR 분석 연구)

  • Kim, Jin-Sun;Kim, Sea-In;Yoon, Hyun-Kyoung;Choo, Min-kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.733-741
    • /
    • 2022
  • Among the various evidence found in maritime crimes, fingerprints and DNA are very important in that they can identify a suspect. In this study, 5 types of non-porous surfaces (plastic, stainless, glass, ceramic, FRP), which are often found as evidence in the actual marine environment, were selected, and latent and blood fingerprints were passed down and immersed at the Donghae Maritime Police Station's exclusive pier for about 7 days. After that, DNA extraction, quantification, and STR profile were analyzed after fingerprint developing CA fumming method and 4 powder methods (Swedish black powder, Concentrated black powder, Supranano red powder, Dazzle orange powder). Among the fingerprint developing methods, when Supranano red powder was applied, a relatively high amount of DNA was found. As a result of STR profile analysis, an average of 16.8 to 9 loci were secured, and all 20 were confirmed in glass and ceramic materials. As a result of the study, it was possible to secure the STR profile by extracting and quantifying DNA after applying the fingerprint developing method to virtual evidence immersed for about 7 days, and further research is needed to secure the STR profile by analyzing DNA after applying various fingerprint developing methods such as VMD and SPR.

Electrochemical Behavior of Tin and Silver during the Electrorecycling of Pb-free Solder (Sn-Ag-Cu) Waste (폐무연솔더(Sn-Ag-Cu)의 전해재활용 시 주석과 은의 전기화학적 거동 연구)

  • Kim, Min-seuk;Lee, Jae-chun;Kim, Rina;Chung, Kyeong-woo
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.61-72
    • /
    • 2022
  • We investigated the electrochemical behavior of Sn (93.0 %)-Ag (4.06 %)-Cu (0.89 %) during electrolysis of Pb-free solder waste to recover tin and silver. A thin strip of the solder waste produced by high-temperature melting and casting was used as a working electrode to perform electrochemical analysis. During anodic polarization, the current peak of an active region decreased with an increase in the concentration of sulfuric acid used as an electrolyte. This resulted in the electro-dissolution of the working electrode in the electrolyte (1.0 molL-1 sulfuric acid) for a constant current study. The study revealed that the thickening of an anode slime layer at the working surface continuously increased the electrode potential of the working electrode. At 10 mAcm-2, the dissolution reaction continued for 25 h. By contrast, at 50 mAcm-2, a sharp increase in the electrode potential stopped the dissolution in 2.5 h. During dissolution, silver enrichment in the anode slime reached 94.3% in the 1 molL-1 sulfuric acid electrolyte containing a 0.3 molL-1 chlorine ion, which was 12.7% higher than that without chlorine addition. Moreover, the chlorine enhanced the stability of the dissolved tin ions in the electrolyte as well as the current efficiency of tin electro-deposition at the counter electrode.

Zircon U-Pb and Rare Earth Elements Analyses on Banded Gneiss in Euiam Gneiss Complex, Central Gyeonggi Massif: Consideration for the Timing of Depositional Event and Metamorphism of the Basement Rocks in the Gyeonggi Massif (경기육괴 중부 의암 편마암 복합체 호상편마암의 저어콘 U-Pb 연령과 미량원소: 경기육괴 기반암의 퇴적 시기와 변성작용에 대한 고찰)

  • Lee, Byung Choon;Cho, Deung-Lyong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.215-233
    • /
    • 2022
  • The zircon U-Pb and trace element analyses were performed for banded gneiss in the Euiam gneiss complex, central Gyeonggi Massif. An age of detrital zircon shows predominant age peaks at ca. 2500-2480 Ma with numerous ages ranging from Siderian to Rhyacian period. The youngest age peak of detrital zircon constrains the maximum deposition age of protolith of banded gneiss at ca. 2070 Ma. Meanwhile, the zircon rim yielded metamorphic age of ca. 1966 ± 39 Ma ~ 1918 ± 13 Ma. Based on the error range, degree of discordancy, and value of mean squared weighted deviation, we considered that the age of 1918 ± 13 Ma is the most reasonable age indicating the timing of metamorphism for banded gneiss. The zircon rims yield Ti-in-zircon crystallization temperature of 690-740℃. Therefore, we suggested that there was a high-grade metamorphic event in the Gyeonggi Massif at ca. 1918 Ma which is older than the metamorphic event that occurred in the Gyeonggi Massif during ca. 1880-1860 Ma.

Genetic Environments of Au-Ag-bearing Gasado Hydrothermal Vein Deposit (함 금-은 가사도 열수 맥상광상의 성인)

  • Ko, Youngjin;Kim, Chang Seong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • The Gasado Au-Ag deposit is located within the south-western margin of the Hanam-Jindo basin. The geology of the Gasado is composed of the late Cretaceous volcaniclastic sedimentary rocks and acidic or intermediate igneous rocks. Within the deposit area, there are a number of hydrothermal quartz and calcite veins, formed by narrow open space filling along subparallel fractures in the late Cretaceous volcaniclastic sedimentary rock. Vein mineralization at the Gasado is characterized by several textural varieties such as chalcedony, drusy, comb, bladed, crustiform and colloform. The textures have been used as exploring indicators of the epithermal deposit. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) considering major tectonic fracturing event. Stage I, at which the precipitation of Au-Ag bearing minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite and pyrrhotite with minor chalcopyrite, sphalerite and electrum; middle, characterized by introduction of electrum and base-metal sulfides with minor argentite; late, marked by argentite and native silver. Au-Ag-bearing mineralization at the Gasado deposit occurred under the condition between initial high temperatures (≥290℃) and later lower temperatures (≤130℃). Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur (≈10-10.1 to ≤10-18.5atm) by evolution of the Gasado hydrothermal system with increasing paragenetic time. The Gasado deposit may represents an epithermal gold-silver deposit which was formed near paleo-surface.