• 제목/요약/키워드: High density expansion material

검색결과 56건 처리시간 0.032초

Navigation Connection용 ACF(Anisotropic Conductive Film)의 수명 예측 (Lifetime Estimation of an ACF in Navigation)

  • 유영창;신승중;곽계달
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1277-1282
    • /
    • 2008
  • Recently LCD panels have becom very important components for portable electronics. In the high density interconnection material, ACF's are used to connect the outer lead of the tape automated bonding to the transparent indium tin oxide electrodes of the LCD panel. ACF consists of an adhesive polymer matrix and randomly dispersed conductive balls. In this study, we analyzed Failure Mode / Mechanism of ACF which is identified Conductive ball Corrsion, Delamination, Crack and Polymer Expansion / Swelling. In ALT(Accelerated Life Test), we select primary stress factors as temperature and humidity. As time passes by, an increase of connection resistance was observed. In conclusion, we have found that high temperature / humidity affects the adhesion.

  • PDF

도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성 (Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste)

  • 장준호
    • 한국환경과학회지
    • /
    • 제19권5호
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.

박막트랜지스터 게이트 절연막 응용을 위한 불화막 특성연구 (The Study of Fluoride Film Properties for TFT gate insulator application)

  • 김도영;최석원;이준신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.737-739
    • /
    • 1998
  • Gate insulators using various fluoride films were investigated for thin film transistor applications. Conventional oxide containing materials exhibited high interface states, high $D_{it}$ gives an increased threshold voltage and poor stability of TFT. To improve TFT performances, we must reduce interface trap charge density between Si and gate insulator. In this paper, we investigated gate insulators such as such as $CaF_2$, $SrF_2$, $MgF_2$ and $BaF_2$. These materials exhibited an improvement in lattice mismatch, difference in thermal expansion coefficient, and electrical stability MIM and MIS devices were employed for an electrical characterization and structural property examination. Among the various fluoride materials, $CaF_2$ film showed an excellent lattice mismatch of 0.737%, breakdown electric field higher than 1.7MV/cm and leakage current density of $10^{-6}A/cm^2$. This paper probes a possibility of new gate insulator material for TFT application.

  • PDF

AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링 (Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process)

  • 최원석;김훈영;신영관;최준하;장원석;김재구;조성학;최두선
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

Cr2O3-MgO-Y2O3 첨가에 따른 뮬라이트 세라믹스의 기계적 성질 (Effect of Cr2O3-MgO-Y2O3 Addition on Mechanical Properties of Mullite Ceramics)

  • 임진현;김시연;여동훈;신효순;정대용
    • 한국전기전자재료학회논문지
    • /
    • 제30권12호
    • /
    • pp.762-767
    • /
    • 2017
  • Mullite ($3Al_2O_3{\cdot}2SiO_2$) has emerged as a promising candidate for high-temperature structural materials due to its erosion resistance, chemical and thermal stabilities, relatively low thermal expansion coefficient, excellent thermal shock and creep resistances, and low dielectric constant. However, since the pure mullite sintering temperature is as high as $1,600{\sim}1,700^{\circ}C$, there is an increasing need for a sintering additive capable of improving the strength characteristics while lowering the sintering temperature. Herein we have tried to obtain the optimal sintering additive composition by adding MgO, $Cr_2O_3$, and $Y_2O_3$ to mullite, followed by sintering at $1,325{\sim}1,550^{\circ}C$ for 2 h. With additives of 2 wt% of MgO, 2 wt% of $Cr_2O_3$, 4 wt% of $Y_2O_3$, A density of $3.23g/cm^3$ was obtained for the sintered body at $1,350^{\circ}C$ upon using 2 wt% MgO, 2 wt% $Cr_2O_3$, and 4 wt% $Y_2O_3$ as additives. The three-point flexural strength of that was 275 MPa and the coefficient of thermal expansion (CTE) was $4.15ppm/^{\circ}C$.

건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발 (Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process)

  • 전도만;나병기;이영우
    • 청정기술
    • /
    • 제24권4호
    • /
    • pp.332-338
    • /
    • 2018
  • 현재 리튬이온전지의 음극 소재 활물질로는 흑연이 주로 사용되고 있다. 그러나 흑연의 최대 이론 용량이 $372mA\;h\;g^{-1}$으로 제한되기 때문에 차세대 고용량 및 고에너지 밀도의 리튬이온전지 개발을 위해서는 새로운 음극 소재 활물질이 필요하다. 여러 음극 소재 활물질 중에서 Si의 최대 이론 용량은 $4200mA\;h\;g^{-1}$으로 흑연의 최대 이론 용량보다 약 10배 이상 높은 값을 나타내고 있지만 부피 팽창율이 거의 400%로 크기 때문에 사이클이 진행될수록 비가역 용량이 증가하여 충전 대비 방전 용량이 현저히 감소하는 현상을 나타내고 있다. 이러한 문제점을 해결하기 위한 방법으로 Si 음극 소재 활물질의 입자 크기를 조절하여 기계적 응력 및 반응상의 체적 변화를 감소시켜 사이클 특성을 다소 향상시킬 수 있다. 따라서 Si 입자의 부피 팽창율에 따른 충전 및 방전 용량의 감소를 최소화하기 위해 공정 시간 및 원가 절감이 우수한 건식 방법으로 Si을 분쇄하여 사이클 특성 향상에 관한 연구를 진행 하였다. 본 논문에서는 진동밀을 이용하여 Si을 나노 크기로 제어하고 실험 변수에 따른 재료들의 물리화학적 특성과 전기화학적 특성을 측정하였다.

터널 화재시나리오에 따른 콘크리트 PC패널 라이닝의 전열특성에 관한 해석적 연구 (An Study on Heat Transfer Analysis to Concrete PC Pannel Lining under Tunnel Fire Scenario)

  • 김형준;김흥열;박경훈;신현준
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2009년도 춘계학술논문발표회 논문집
    • /
    • pp.487-492
    • /
    • 2009
  • This study was performed FE numerical analysis under 120-minute fire conditions, using the ABAQUS, a wide use software, on the basis of the test results by concrete tunnel lining fire strengths (ISO, RWS, and MHC). The concrete material test was to secure the material properties of concrete linings, which were numerical analysis input conditions. And then built the material properties, such as specific heat, heat transfer rate, heat expansion rate, density, elasticity coefficient and compression strength under high temperature conditions, as database at 20 $^{\circ}C$ to 800 $^{\circ}C$, applying them to analysis as input values. As a result, the tunnel linings under RWS fire conditions saw fire temperature rose to maximum 1119 $^{\circ}C$at the location of 5 mm above a thermal surface, and saw surface temperature amount to 1214 $^{\circ}C$ in the middle part.

  • PDF

Atomistic Investigation of Lithiation Behaviors in Silicon Nanowires: Reactive Molecular Dynamics Simulation

  • 정현;주재용;조준형;이광렬;한상수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.160.2-160.2
    • /
    • 2014
  • Recently silicon has attracted intense interest as a promising anode material of lithium-ion batteries due to its extremely high capacity of 4200 mA/g (for Li4.2Si) that is much higher than 372 mAh/g (for LiC6) of graphite. However, it seriously suffers from large volume change (even up to 300%) of the electrode upon lithiation, leading to its pulverization or mechanical failure during lithiation/delithiation processes and the rapid capacity fading. To overcome this problem, Si nanowires have been considered. Use of such Si nanowires provides their facile relaxation during lithiation/delithiation without mechanical breaking. To design better Si electrodes, a study to unveil atomic-scale mechanisms involving the volume expansion and the phase transformation upon lithiation is critical. In order to investigate the lithiation mechanism in Si nanowires, we have developed a reactive force field (ReaxFF) for Si-Li systems based on density functional theory calculations. The ReaxFF method provides a highly transferable simulation method for atomistic scale simulation on chemical reactions at the nanosecond and nanometer scale. Molecular dynamics (MD) simulations with the ReaxFF reproduces well experimental anisotropic volume expansion of Si nanowires during lithiation and diffusion behaviors of lithium atoms, indicating that it would be definitely helpful to investigate lithiation mechanism of Si electrodes and then design new Si electrodes.

  • PDF

Quartz에서 cristobalite로의 전이에 미치는 미량성분의 영향 (Effects of impurities on transformation of quartz to cristobalite)

  • Jin Kim;Jeong-Hoon
    • 한국결정성장학회지
    • /
    • 제4권3호
    • /
    • pp.315-324
    • /
    • 1994
  • 고순도 규사 원료를 열처리하는 경우, 불순물로 포함되어 있는 미량성분이 quartz의 전이과정에 미치는 영향 및 전이 경로에 대하여 조사하였다. 미량성분의 영향을 조사한 결과, 규사 중의 미량성분 함량이 많아지면 cristobalite 생성량은 많아지며, quartz의 소멸온도 및 cristobalite의 생성온도는 낮아졌다. quartz의 전이경로를 조사한 결과 quartz $\rightarrow$ 천이비정질상 $\rightarrow$ melt (T) 및 quartz $\rightarrow$ 천이비정질상 $\rightarrow$ cristobalite $\rightarrow$ melt (C)의 경로가 항상 공존하며, 미량성분이 적은 경우는 T 경로가 우세하지만, 미량성분이 많은 경우는 C 경로가 우세한 것으로 규명되었다. 또한 XRD를 이용한 결정질 함량의 분석 결과로 부터 계산한 밀도와 pycnometer로 측정한 밀도를 비교한 결과 서로 일치하였다. 규사를 용융하여 석영유리를 제조하는 경우,특정온도에서 규사의 팽창 정도를 유추할 수 있을 것이다.

  • PDF

PDP의 격벽 형성 공정인 감광성 공법에서 $B_2O_3-Al_2O_3-SiO_2$계 유리 조성의 열적 특성과 굴절률 변화 (Thermal Properties and Refractive Index of $B_2O_3-Al_2O_3-SiO_2$ Glasses for Photolithographic Process of Barrier Ribs in PDP)

  • 황성진;원주연;김형순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.321-321
    • /
    • 2008
  • To obtaingood resolution in PDP, one of the important factors is to achieve the accuracy of barrier ribs. The photolithographic process can be used to form patterns of barrier rib with high accuracy and a high aspect ratio. The composition for photolithography is based on the $B_2O_3-SiO_2-Al_2O_3$ glass system including additives such as alkali oxides and alkali earth oxides. The refractive index and thermal properties in glass system are changed by amount of alkali oxides and alkali earth oxides. Therefore, it is important that additives are controlled to have proper refractive index and thermal properties. The additives are contributed to non-bridging oxygen within the glass network, causing a change of density. In addition to a change of the structural cross-link density, the refractive index, dielectric and thermal properties glass are correlated with ionic radius and polarizability of cations. In this study, we investigated the refractive index and the thermal properties such as glass transition temperature, glass softening temperature and coefficient of thermal expansion by changing composition in the $B_2O_3-SiO_2-Al_2O_3$ glass system.

  • PDF