• Title/Summary/Keyword: High angle of attack

Search Result 205, Processing Time 0.021 seconds

Characteristics of Vortical Jet Structures of a Hydrofoil

  • Yang, Chang-Jo;Kim, You-Taek;Choi, Min-Seon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.842-851
    • /
    • 2007
  • Oscillating foil propulsion, the engineering application of fish-like movement of a hydrofoil, has received in recent decades as a possible competitor for propellers. The oscillating foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. We have explored propulsion hydrodynamics as a concept in wake flow pattern. The present study has been examined various conditions such as oscillating frequencies and amplitudes in NACA0010 profile. Flow visualizations showed that high thrust was associated with the generation of moderately strong vortices, which subsequently combine with trailing-edge vorticity leading to the formation of a reverse $K\acute{a}rm\acute{a}n$ vortex street. Vortex generation was inherent to jet production and playeda fundamental role in the wake dynamics. And it was shown that the strong thrust coefficient obtained as the Strouhal number was larger.

Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena

  • Boo, Kyung-Tae;Song, In-Hang;Soochul Shin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In these ten years, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. The cavitation in the rudder blades which is injurious to rudder efficiency is mainly caused by the main flow with a large angle of attack induced by propellers, and the erosion which occurs as a result of repeated blows by shock wave that cavitation collapse may produce was observed in the gap legion of the rudder. However, gap cavitation is not prone to occur in model experiments because of low Reynolds number. So, the viscous effect should be considered for solving the flow of the narrow gap. In order to predict the cavitation phenomena and to improve the performance of the rudder, the analysis of the viscous flow in the rudder gap is positively necessary. In this study, numerical calculation for the solution of the RANS equation is applied to the two-dimensional flow around the rudder gap including horn part and pintle part. The velocity and pressure field are numerically acquired according to Reynolds number and the case that the round bar is installed in the gap is analyzed. For reduced the acceleration that pressure drop can be highly restrained numerically and in model experiment, the cavitation bubbles can be reduced.

Chemical and micromorphological changes of archaeological waterlogged wood degraded in marine situations. (해양에서 열화된 완도선 수침고목재의 화학적.미시형태적 변화)

  • Kim, Ik-Joo
    • 보존과학연구
    • /
    • s.11
    • /
    • pp.87-105
    • /
    • 1990
  • Chemical and micro morphological changes of archaeological waterlogged woods from shipwrecked materials in marine situations were investigated which were submerged in seabed for over 900 years. Tested Wood species were Pinusdensiflora, Zelkova serrata, Quercus acutissima and Camellia japonica. The obtained results were summarized as follows; Chemical analysis showed that lignin content was increased, whereas the amout of holocellulose was heavily decreased in the degraded archaeological lwoods(DAW), when compared to the recent woods. The amount of alkalineextractives in the DAW was extremley high. IR spectra showed that disappearance of absortion band at $1,730㎝^-1$ intensity increase at 1,600, 1,500 and $1,270㎝^-1$ and the emergence of single band around $1,050㎝^-1$.Microscopic investigation showed that cell wall of latewood tracheids and fiber in the DAW were severely degraded while, early wood tracheids less degraded. Degradation in the cell wall was mainley occurred in $S_2$layer, while the middle lamella was the least degraded. The micro morphological characteristics of DAW were separation of secondary wall from middle lamella, cavities aligned with micro fibril angle in $S_2$layer and granular appearance of secondary wall by the bacterial attack.

  • PDF

A Study on the Design and Validation of Switching Control Law (전환제어법칙 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

Cavitating Flow Characteristics around a 2-Dimensional Hydrofoil Section (2차원 날개 단면 주위의 캐비테이팅 유동 특성 연구)

  • Choi, Jung-Eun;Chung, Seok-Ho;Lee, Dong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.74-82
    • /
    • 2007
  • Recently, the erosion due to cavitation frequently occurs on a horn-type rudder of a high-speed large container carrier. It is necessary to understand the flow characteristics around a rudder in fully wetted and cavitating flow condition, and the process of generation and collapse of cavitation for a rudder design to minimize the cavity-induced erosion. The flow characteristics around a two-dimensional hydrofoil(NACA66) are investigated through the computational method utilizing a viscous flow theory applied to a cavitation model. The computational results from the viscous flow theory are verified by the comparison with the experimental results, and are compared with those from the potential flow theory. The effects of angle of attack, Reynolds number, cavitation number, and thickness ratio on the cavitating flow are also investigated.

Observation of the Vortex Interaction over an Yawed Delta Wing with Leading Edge Extension by Flow Visualization and 5-hole Probe Measurements (가시화와 5공 프로브 측정을 통한 연장된 앞전을 갖는 편요된 델타형 날개에서의 와류 상호작용 관찰)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.388-393
    • /
    • 2001
  • An experimental study is conducted to investigate the interaction of vortices over a delta wing with leading edge extension(LEX) through the off-surface flow visualization and the 5-hole probe measurements of the wing wake region. Especially, the application of a new visualization technique is employed by ultrasonic humidifier water droplet and laser beam sheet. The results, both the off-surface visualization and the 5-hole probe, show that LEX tends to stabilize the vortices of the delta wing up to the high angle of attack even though the model is yawed. With increasing yaw, the windward leading edge vortex moves inward, and closer to the wing surface, while the leeward vortex moves outwards and away from the wing surface. The vortex interaction is promoted in the windward side, and is delayed in the leeward side.

  • PDF

제공전투기의 초음속 순항 성능 향상을 위한 가변 앞전형상 에어포일의 개념설계 제안

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.647-652
    • /
    • 2016
  • To reduce drag force at supersonic speeds, sharp leading edge is hugely efficient. It is, however, incompatible with leading edge shape to have fine aerodynamic characteristics at subsonic and transonic speeds. It is critical to reduce drag force for enhanced cruise performance and higher efficiency. An air superiority fighter, however, required to have high maneuverability for survivability, and sharp leading edge is not proper. Consequently, variable leading edge is demanded to reduce drag force significantly at supersonic speeds for cruise performance. Leading edge altering system is constructed with rigid material to improve possibility of realization, and minimized movement of its components in altering for reduce effects on flight. It is compared with bi-convex airfoil and NACA 65-006 airfoil, which have comparable maximum thickness. At Mach number 1.7 and zero angle of attack, supersonic mode of designed airfoil indicates approximately 17% higher drag coefficient than the bi-convex airfoil indicates, it is, however, 23% lower than the NACA 65-006 indicates. Also, subsonic mode of the designed airfoil shows fine aerodynamic characteristics in comparison with NACA 65-006 airfoil in subsonic and transonic speed range. In this regard, design of the airfoil achieved the object of this study satisfactorily.

  • PDF

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.

Multidisciplinary Multi-Point Design Optimization of Supersonic fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 다학제간 다점 설계)

  • Kim Y. S.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study, the multidisciplinary aerodynamic-structural optimal design is carried out for the supersonic fighter wing. Through the aeroelastic analyses of the various candidate wings, the aerodynamic and structural performances are calculated such as the lift coefficient, the drag coefficient and the deformation of the wing. In general, the supersonic fighter is maneuvered under the various flight conditions and those conditions must be considered all together during the design process. The multi-point design, therefore, is deemed essential. For this purpose, supersonic dash, long cruise range and high angle of attack maneuver are selected as representative design points. Based on the calculated performances of the candidate wings, the response surfaces for the objectives and constraints are generated and the supersonic fighter wing is designed for better aerodynamic performances and less weights than the baseline. At each design point, the single-point design is performed to obtain better performances. Finally, the multi-point design is performed to improve the aerodynamic and structural performances for all design points. The optimization results of the multi-point design are compared with those of the single-point designs and analyzed in detail.

  • PDF

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.