• 제목/요약/키워드: High Voltage Control

검색결과 2,379건 처리시간 0.027초

고 전력 응용을 위한 유도가열 Jar용 Active-Clamped Class-E 인버터 시스템의 새로운 Hybrid 제어 기법 (A New Hybrid Control Scheme with Active-Clamped Class-E Inverter system of Induction Heating Jar for High Power Applications)

  • 이동윤;이민광;현동석;김정철;최익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1009-1011
    • /
    • 2001
  • This paper presents a new hybrid control scheme using Active-Clamped Class-E (ACCE) inverter of induction heating(IH) jar for high power applications. The proposed hybrid control scheme has characteristics, which act as class-E inverter at lower switch voltage and ACCE inverter at higher switch voltage than reference voltage of the main switch by feeding back voltage one as well as advantages of conventional ACCE inverter such as zero-voltage switching(ZVS) of the main switch and the reduced switch voltage due to the clamping circuit. Moreover, the proposed control method makes higher output power than conventional ACCE inverter control one since ACCE inverter is operated like class-E inverter at low voltage condition. The principle of the proposed control are explained in detail and the validity of the proposed control scheme is verified through the several interesting simulated and experimental results.

  • PDF

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.

직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구 (A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter)

  • 백승우;김학원;조관열
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler

  • Lee, Hee-Jun;Shin, Soo-Cheol;Hong, Seok-Jin;Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2224-2236
    • /
    • 2014
  • The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.

친환경 차량용 고전압 DC/DC 컨버터의 가변 전압 제어 (A Variable Voltage Control Method of the High Voltage DC/DC Converter for a Hybrid or Battery Electric Vehicle)

  • 권태석
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.71-77
    • /
    • 2011
  • An analysis, which is focused on electrical losses of an electrical propulsion system with High voltage DC/DC Converter (HDC) for a hybrid and an electric vehicle, is presented. From the analysis, it can be known that the electrical losses are closely related to the dc link voltage of the HDC, and there is an optimal dc link voltage which minimizes the losses. In this paper, the method to decide the optimal dc link voltage is proposed and the comparison on the losses by the control methods of the dc link voltage, during a driving cycle, is performed and the result is also presented.

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.

소호각 제어를 이용한 Switched Reluctance Generator의 출력 전압 제어 (Output Voltage Control Method of a Switched Reluctance Generator using Turn-off Angle Control)

  • 김영조;전형우;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권7호
    • /
    • pp.356-363
    • /
    • 2001
  • A SRG (Switched Reluctance Generator) has many advantages such as high efficiency, low cost, high-speed capability and robustness compared with other of machine. But the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using the PID controller which only controls turn-off angles while keeping turn-on angles of SRG constant. In order to keep the output voltage constant, the turn-off angle for load variations is controlled by using linearity between the generated current and turn-off angle since the reference generated current can be led through the voltage errors between the reference and the actual voltage. The suggested control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and the speed sensors. The proposed method is verified by experiments.

  • PDF

불평형 전압 조건에서 스위칭 소자의 전류 용량과 순환전류를 고려한 HVDC-MMC 제어기법 (Control of HVDC-MMC Considering the Switching Device's Current Capacity and Circulating Current under Unbalanced Voltage Conditions)

  • 문지우;배득우;박정우;강대욱;유동욱;김장목
    • 전력전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.270-278
    • /
    • 2013
  • This paper proposes a control method for high voltage direct current(HVDC) with modular multilevel converter (MMC) under unbalanced voltage conditions considering the submodule(SM)'s current capacity and circulating current. It is aimed to propose a control method in which the current peak value does not exceed the maximum value of HVDC-MMC by considering the current capacity of the SM under unbalance voltage conditions. And it analyzes the effect of the unbalanced voltage on circulating currents in MMC and then proposes a control method considering each component of circulating currents under unbalanced voltages. The effectiveness of the proposed controlling method is verified through simulation results using PSCAD/EMTDC.

Design of Emotional Learning Controllers for AC Voltage and Circulating Current of Wind-Farm-Side Modular Multilevel Converters

  • Li, Keli;Liao, Yong;Liu, Ren;Zhang, Jimiao
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2294-2305
    • /
    • 2016
  • The introduction of a high-voltage direct-current (HVDC) system based on a modular multilevel converter (MMC) for wind farm integration has stimulated studies on methods to control this type of converter. This research article focuses on the control of the AC voltage and circulating current for a wind-farm-side MMC (WFS-MMC). After theoretical analysis, emotional learning (EL) controllers are proposed for the controls. The EL controllers are derived from the learning mechanisms of the amygdala and orbitofrontal cortex which make the WFS-MMC insensitive to variance in system parameters, power change, and fault in the grid. The d-axis and q-axis currents are respectively considered for the d-axis and q-axis voltage controls to improve the performance of AC voltage control. The practicability of the proposed control is verified under various conditions with a point-to-point MMC-HVDC system. Simulation results show that the proposed method is superior to the traditional proportional-integral controller.

Design of the High Frequency Resonant Inverter for Corona Surface Processes

  • Choi, Chul-Yong;Lee, Dae-Sik
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.119-122
    • /
    • 2005
  • A algorithm for control and performance of a pulse-density-modulated (PDM) series-resonant voltage source inverter developed for corona-dischange precesses is presented. The PDM inverter produces either a square-wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant dc voltage and operating frequency. Moreover it can achieve zero-current-switching (ZCS) and zero-voltage-switching (ZVS) in all the operating condition for a reduction of switching lost. Even though the corona discharge load with a strong nonlinear characteristics, new high frequency resonant inverter is shown the wide range power control from 5% to 100%.

  • PDF